Vol. 36
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-05-23
Fast Wideband Analysis of Antennas Using Ie-PO Hybrid Method and the Best Uniform Approximation
By
Progress In Electromagnetics Research M, Vol. 36, 139-147, 2014
Abstract
An efficient wide-band analysis that combines modified integral equation-physical optics (IE-PO) hybrid formulation with the best uniform approximation is proposed for antennas around an electrically large platform in this paper. The modified single-level Fast Fourier Transform (FFT) algorithm which is based on the subdomain FFT acceleration is employed by interpolating the Green's function and introducing the concept of the empty groups. Furthermore, the correction of the near-interaction is avoided. On the other hand, the best uniform approximation technique is applied to analyze wide-band properties of antennas. Due to the above modifications, the hybrid method needs fewer unknowns and memory requirements than the conventional one.
Citation
Wen-Feng Chen, Shu-Xi Gong, Bo Zhao, and Peng-Fei Zhang, "Fast Wideband Analysis of Antennas Using Ie-PO Hybrid Method and the Best Uniform Approximation," Progress In Electromagnetics Research M, Vol. 36, 139-147, 2014.
doi:10.2528/PIERM14033109
References

1. Jakobus, U. and F. M. Landstorfer, "Improved PO-MM hybrid formulation for scattering from three-dimensional perfectly conducting bodies of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 43, No. 2, 162-169, 1995.
doi:10.1109/8.366378

2. Obelleiro, F., J. M. Taboada, J. L. Rodríguez, J. O. Rubiños, and A. M. Arias, "Hybrid moment-method physical-optics formulation for modeling the electromagnetic behavior of on-board antennas," Microw. Opt. Technol. Lett., Vol. 27, No. 2, 88-93, Oct. 2000.
doi:10.1002/1098-2760(20001020)27:2<88::AID-MOP3>3.0.CO;2-4

3. Ma, J., S. X. Gong, X. Wang, et al. "E±cient IE-FFT and PO hybrid analysis of antennas around electrically large platforms," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 611-614, 2011.

4. Song, J. M. and W. C. Chew, "Multilevel fast multipole algorithm for solving combined field integral equation of electromagnetic scattering," Microw. Opt. Technol. Lett., Vol. 10, No. 1, 14-19, Sep. 1995.
doi:10.1002/mop.4650100107

5. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propagat., Vol. 45, No. 10, 1488-1493, Oct. 1997.
doi:10.1109/8.633855

6. Song, J. M. and W. C. Chew, "Fast multipole method solution of combined field integral equation," 11th Annual Review of Orogress in Applied Computational Electromagnetics, Vol. 1, 629-636, Monterey, California, Mar. 1995.

7. Rokhlin, V., "Rapid solution of integral equations of classical potential theory," J. Comput. Phys., Vol. 60, 187-207, 1985.
doi:10.1016/0021-9991(85)90002-6

8. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas Propagat. Mag., Vol. 35, No. 3, 7-12, Jun. 1993.
doi:10.1109/74.250128

9. Phillips, J. R. and J. K. White, "A precorrected-FFT method for electrostatic analysis of complicated 3-D structures," IEEE Trans. Computer-Aided Design Integr. Circuits Syst., Vol. 16, No. 10, 1059-1072, Oct. 1997.
doi:10.1109/43.662670

10. Phillips, J. R., "Error and complexity analysis for a collocation grid projection plus precorrected- FFT algorithm for solving potential integral equations with Laplace or Helmholtz kernels," Proc. 1995 Copper Mountain Conf. Multigrid Methods, 673-688, Apr. 1995.

11. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Sci., Vol. 31, No. 5, 1225-1251, 1996.
doi:10.1029/96RS02504

12. Wang, C. F., F. Ling, J. M. Song, and J. M. Jian, "Adaptive integral solution of combined field integral equation," Microw. Opt. Technol. Lett., Vol. 19, No. 5, 321-328, 1998.
doi:10.1002/(SICI)1098-2760(19981205)19:5<321::AID-MOP3>3.0.CO;2-G

13. Seo, S. M. and J. F. Lee, "A fast IE-FFT algorithm for solving PEC scattering problem," IEEE Transactions on Magnetics, Vol. 41, No. 5, 1476-1479, 2005.
doi:10.1109/TMAG.2005.844564

14. Ma, J., S. X. Gong, X. Wang, Y. Liu, and Y. X. Xu, "E±cient wide-band analysis of antennas around a conducting platform using MoM-PO hybrid method and asymptotic waveform evaluation technique," IEEE Trans. Antennas Propagat., Vol. 60, No. 12, 6048-6052, 2012.
doi:10.1109/TAP.2012.2210272

15. Peng, Z. and X. Q. Sheng, "A bandwidth estimation approach for the asymptotic waveform evaluation technique," IEEE Trans. Antennas Propagat., Vol. 56, No. 3, 913-917, 2008.
doi:10.1109/TAP.2008.917017

16. Nie, X. C., N. Yuan, L. W. Li, and Y. B. Gan, "Fast analysis of RCS over a frequency band using pre-corrected FFT/AIM and asymptotic waveform evaluation technique," IEEE Trans. Antennas Propagat., Vol. 56, No. 11, 3526-3533, 2008.
doi:10.1109/TAP.2008.2005455

17. Wang, X., S. X. Gong, J. L. Guo, Y. Liu, and P. F. Zhang, "Fast and accurate wide-band analysis of antennas mounted on conducting platform using AIM and asymptotic waveform evaluation technique," IEEE Trans. Antennas Propagat., Vol. 59, No. 12, 4624-4633, 2011.
doi:10.1109/TAP.2011.2165495

18. Güdü, T. and L. Alatan, "Use of asymptotic waveform evaluation technique in the analysis of multilayer structures with doubly periodic dielectric gratings," IEEE Trans. Antennas Propagat., Vol. 57, No. 9, 2641-2649, 2009.
doi:10.1109/TAP.2009.2027050

19. Burke, G. J., E. K. Miller, S. Chakrabarthi, et al. "Using model-based parameter estimation to increase the e±ciency of computing electromagnetic transfer functions," IEEE Transactions on Magnetics, Vol. 25, No. 7, 2807-2809, Jul. 1989.

20. Hernandez, M. A., "Chebyshev's approximation algorithms and applications," Computers & Mathematics with Applications, Vol. 41, No. 3-4, 433-455, 2001.
doi:10.1016/S0898-1221(00)00286-8

21. Chen, M. S., X. L. Wu, Z. X. Huang, and W. Sha, "Accurate computation of wideband response of electromagnetic scattering problems via Maehly approximation," Microw. Opt. Technol. Lett., Vol. 49, No. 5, 1144-1146, 2007.
doi:10.1002/mop.22367

22. Chen, M. S., X. L. Wu, W. Sha, and Z. X. Huang, "Fast and accurate radar cross-section computation over a broad frequency band using the best uniform rational approximation," IET Microw. Antennas Propag., Vol. 2, 200-204, Feb. 2008.
doi:10.1049/iet-map:20070155