1. Jakobus, U. and F. M. Landstorfer, "Improved PO-MM hybrid formulation for scattering from three-dimensional perfectly conducting bodies of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 43, No. 2, 162-169, 1995.
doi:10.1109/8.366378 Google Scholar
2. Obelleiro, F., J. M. Taboada, J. L. Rodríguez, J. O. Rubiños, and A. M. Arias, "Hybrid moment-method physical-optics formulation for modeling the electromagnetic behavior of on-board antennas," Microw. Opt. Technol. Lett., Vol. 27, No. 2, 88-93, Oct. 2000.
doi:10.1002/1098-2760(20001020)27:2<88::AID-MOP3>3.0.CO;2-4 Google Scholar
3. Ma, J., S. X. Gong, X. Wang, et al. "E±cient IE-FFT and PO hybrid analysis of antennas around electrically large platforms," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 611-614, 2011. Google Scholar
4. Song, J. M. and W. C. Chew, "Multilevel fast multipole algorithm for solving combined field integral equation of electromagnetic scattering," Microw. Opt. Technol. Lett., Vol. 10, No. 1, 14-19, Sep. 1995.
doi:10.1002/mop.4650100107 Google Scholar
5. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propagat., Vol. 45, No. 10, 1488-1493, Oct. 1997.
doi:10.1109/8.633855 Google Scholar
6. Song, J. M. and W. C. Chew, "Fast multipole method solution of combined field integral equation," 11th Annual Review of Orogress in Applied Computational Electromagnetics, Vol. 1, 629-636, Monterey, California, Mar. 1995. Google Scholar
7. Rokhlin, V., "Rapid solution of integral equations of classical potential theory," J. Comput. Phys., Vol. 60, 187-207, 1985.
doi:10.1016/0021-9991(85)90002-6 Google Scholar
8. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas Propagat. Mag., Vol. 35, No. 3, 7-12, Jun. 1993.
doi:10.1109/74.250128 Google Scholar
9. Phillips, J. R. and J. K. White, "A precorrected-FFT method for electrostatic analysis of complicated 3-D structures," IEEE Trans. Computer-Aided Design Integr. Circuits Syst., Vol. 16, No. 10, 1059-1072, Oct. 1997.
doi:10.1109/43.662670 Google Scholar
10. Phillips, J. R., "Error and complexity analysis for a collocation grid projection plus precorrected- FFT algorithm for solving potential integral equations with Laplace or Helmholtz kernels," Proc. 1995 Copper Mountain Conf. Multigrid Methods, 673-688, Apr. 1995. Google Scholar
11. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Sci., Vol. 31, No. 5, 1225-1251, 1996.
doi:10.1029/96RS02504 Google Scholar
12. Wang, C. F., F. Ling, J. M. Song, and J. M. Jian, "Adaptive integral solution of combined field integral equation," Microw. Opt. Technol. Lett., Vol. 19, No. 5, 321-328, 1998.
doi:10.1002/(SICI)1098-2760(19981205)19:5<321::AID-MOP3>3.0.CO;2-G Google Scholar
13. Seo, S. M. and J. F. Lee, "A fast IE-FFT algorithm for solving PEC scattering problem," IEEE Transactions on Magnetics, Vol. 41, No. 5, 1476-1479, 2005.
doi:10.1109/TMAG.2005.844564 Google Scholar
14. Ma, J., S. X. Gong, X. Wang, Y. Liu, and Y. X. Xu, "E±cient wide-band analysis of antennas around a conducting platform using MoM-PO hybrid method and asymptotic waveform evaluation technique," IEEE Trans. Antennas Propagat., Vol. 60, No. 12, 6048-6052, 2012.
doi:10.1109/TAP.2012.2210272 Google Scholar
15. Peng, Z. and X. Q. Sheng, "A bandwidth estimation approach for the asymptotic waveform evaluation technique," IEEE Trans. Antennas Propagat., Vol. 56, No. 3, 913-917, 2008.
doi:10.1109/TAP.2008.917017 Google Scholar
16. Nie, X. C., N. Yuan, L. W. Li, and Y. B. Gan, "Fast analysis of RCS over a frequency band using pre-corrected FFT/AIM and asymptotic waveform evaluation technique," IEEE Trans. Antennas Propagat., Vol. 56, No. 11, 3526-3533, 2008.
doi:10.1109/TAP.2008.2005455 Google Scholar
17. Wang, X., S. X. Gong, J. L. Guo, Y. Liu, and P. F. Zhang, "Fast and accurate wide-band analysis of antennas mounted on conducting platform using AIM and asymptotic waveform evaluation technique," IEEE Trans. Antennas Propagat., Vol. 59, No. 12, 4624-4633, 2011.
doi:10.1109/TAP.2011.2165495 Google Scholar
18. Güdü, T. and L. Alatan, "Use of asymptotic waveform evaluation technique in the analysis of multilayer structures with doubly periodic dielectric gratings," IEEE Trans. Antennas Propagat., Vol. 57, No. 9, 2641-2649, 2009.
doi:10.1109/TAP.2009.2027050 Google Scholar
19. Burke, G. J., E. K. Miller, S. Chakrabarthi, et al. "Using model-based parameter estimation to increase the e±ciency of computing electromagnetic transfer functions," IEEE Transactions on Magnetics, Vol. 25, No. 7, 2807-2809, Jul. 1989. Google Scholar
20. Hernandez, M. A., "Chebyshev's approximation algorithms and applications," Computers & Mathematics with Applications, Vol. 41, No. 3-4, 433-455, 2001.
doi:10.1016/S0898-1221(00)00286-8 Google Scholar
21. Chen, M. S., X. L. Wu, Z. X. Huang, and W. Sha, "Accurate computation of wideband response of electromagnetic scattering problems via Maehly approximation," Microw. Opt. Technol. Lett., Vol. 49, No. 5, 1144-1146, 2007.
doi:10.1002/mop.22367 Google Scholar
22. Chen, M. S., X. L. Wu, W. Sha, and Z. X. Huang, "Fast and accurate radar cross-section computation over a broad frequency band using the best uniform rational approximation," IET Microw. Antennas Propag., Vol. 2, 200-204, Feb. 2008.
doi:10.1049/iet-map:20070155 Google Scholar