Vol. 37
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-08-12
Enhancement of Angular Resolution of a Flat-Base Luneburg Lens Antenna by Using Correlation Method
By
Progress In Electromagnetics Research M, Vol. 37, 203-211, 2014
Abstract
We propose a technique for enhancing the angular resolution of a flat-base Luneburg lens antenna to enable it to detect multiple targets with arbitrary scattering cross-sections that are located in angular proximity. The technique involves measuring the electric field distribution on the flat plane of the Luneburg lens antenna, operating in the receive mode, at a specified number of positions, and correlating these distributions with the known distributions derived from the field distributions in the measurement plane generated by single target at different look angles. We show that the proposed approach can achieve enhanced resolution than the basis of the beam-width of the Luneburg lens antenna, and it is capable of distinguishing between two targets with different scattering cross-sections that have an angular separation as small as 1˚ for a Luneburg lens with 6.35λ aperture size, for Signal-to-Noise Ratio (SNR) better than 20 dB.
Citation
Xiang Gu Sidharath Jain Raj Mittra Yunhua Zhang , "Enhancement of Angular Resolution of a Flat-Base Luneburg Lens Antenna by Using Correlation Method," Progress In Electromagnetics Research M, Vol. 37, 203-211, 2014.
doi:10.2528/PIERM14061807
http://www.jpier.org/PIERM/pier.php?paper=14061807
References

1. Balanis, C. A., Modern Antenna Handbook, Wiley, 2008.
doi:10.1002/9780470294154

2. Lafond, O., M. Himdi, H. Merlet, and P. Lebars, "An active reconfigurable antenna at 60 GHz based on plate inhomogeneous lens and feeders," IEEE Trans. Antennas Propag., Vol. 61, No. 4, 1672-1678, 2013.
doi:10.1109/TAP.2012.2237003

3. Mirkamali, A., J.-J. Laurin, F. Siaka, and R. Deban, "A planar lens antenna with circular edge inspired by gaussian optics," IEEE Trans. Antennas Propag., Vol. 61, No. 9, 4476-4483, 2013.
doi:10.1109/TAP.2013.2269762

4. Luneburg, R. K., Mathematical Theory of Optics, University of California Press, 1964.

5. Demetriadou, A. and Y. Hao, "A grounded slim Luneburg lens antenna based on transformation electromagnetics," IEEE Antennas and Wireless Propag. Lett., Vol. 10, 1590-1593, 2011.
doi:10.1109/LAWP.2011.2180884

6. Mosallaei, H. and Y. Rahmat-Samii, "Nonuniform Luneburg and two-shell lens antennas: Radiation characteristics and design optimization," IEEE Trans. Antennas Propag., Vol. 49, No. 1, 60-69, 2001.
doi:10.1109/8.910531

7. Pfeiffer, C. and A. Grbic, "A printed, broadband Luneburg lens antenna," IEEE Trans. Antennas Propag., Vol. 58, No. 9, 3055-3059, 2010.
doi:10.1109/TAP.2010.2052582

8. Bosiljevac, M., M. Casaletti, F. Caminita, Z. Sipus, and S. Maci, "Non-uniform metasurface Luneburg lens antenna design," IEEE Trans. Antennas Propag., Vol. 60, No. 9, 4065-4073, 2012.
doi:10.1109/TAP.2012.2207047

9. Dockrey, J. A., M. J. Lockyear, S. J. Berry, S. A. R. Horsley, J. R. Sambles, and A. P. Hibbins, "Thin metamaterial Luneburg lens for surface waves," Physical Review B, Vol. 87, 125137, 2013.
doi:10.1103/PhysRevB.87.125137

10. Mirkamali, A. and J.-J. Laurin, "Two-dimensional loaded wire grid for modelling dielectric objects and its application in the implementation of Luneburg lenses," IET Microw. Antennas Propag., Vol. 6, No. 15, 1728-1737, 2012.
doi:10.1049/iet-map.2012.0344

11. Rondineau, S., M. Himdi, and J. Sorieux, "A sliced spherical Luneburg lens," IEEE Antennas and Wireless Propag. Lett., Vol. 2, 163-166, Feb. 2003.
doi:10.1109/LAWP.2003.819045

12. Wu, L., X. Tian, M. Yin, D. Li, and Y. Tang, "Three-dimensional liquid flattened Luneburg lens with ultra-wide viewing angle and frequency band," Appl. Phys. Lett., Vol. 103, 084102, 2013.
doi:10.1063/1.4819338

13. Wu, L., X. Tian, H. Ma, M. Yin, and D. Li, "Broadband flattened Luneburg lens with ultra-wide angle based on a liquid medium," Appl. Phys. Lett., Vol. 102, 074103, 2013.
doi:10.1063/1.4793206

14. Ma, H. F. and T. J. Cui, "Three-dimensional broadband and broad-angle transformation-optics lens," Nature Communications, 2010, Doi: 10.1038/ncomms1126.

15. Dhouibi, A., S. N. Burokur, A. Lustrac, and A. Priou, "Compact metamaterial-based substrateintegrated Luneburg lens antenna," IEEE Antennas and Wireless Propag. Lett., Vol. 11, 1504-1507, 2012.
doi:10.1109/LAWP.2012.2233191

16. Hua, C., X. Wu, N. Yang, and W. Wu, "Air-filled parallel-plate cylindrical modified Luneberg lens antenna for multiple-beam scanning at millimeter-wave frequencies," IEEE Trans. Microw. Theory Tech, Vol. 61, No. 1, 436-443, 2013.
doi:10.1109/TMTT.2012.2227780

17. Ma, H. F., B. G. Cai, T. X. Zhang, Y. Yang, W. X. Jiang, and T. J. Cui, "Three-dimensional gradient-index materials and their applications in microwave lens antennas," IEEE Trans. Antennas Propag., Vol. 61, No. 5, 2561-2569, 2013.
doi:10.1109/TAP.2012.2237534

18. James, G., A. Parfitt, J. Kot, and P. Hall, "A case for the Luneburg lens as the antenna element for the square-kilometre array radio telescope," Radio Science Bulletin, Vol. 293, 32-37, Jun. 2000.

19. Liang, M., X. Yu, S.-G. Rafael, W.-R. Ng, M. E. Gehm, and H. Xin, "Direction of arrival estimation using Luneburg lens," IEEE International Microwave Symposium (IMS) Digest (MTT), 1-3, Jun. 17-22, 2012.

20. Jain, S. and R. Mittra, "Flat-base broadband multibeam Luneburg lens for wide angle scan," IEEE Antennas and Propagation Society International Symposium (APS), Memphis, TN, 2014.
doi:10.1155/2014/619304

21. Kendall, M. G. and J. D. Gibbons, Rank Correlation Methods, Oxford University Press, 1990.

22. Yu, W., X. Yang, Y. Liu, R. Mittra, and A. Muto, Advanced FDTD Methods: Parallelization, Acceleration, and Engineering Applications, Artech House, Norwood, MA, USA, Mar. 2011.