1. Jakobus, U. and F. Landstorfer, "Improved PO-MM hybrid formulation for scattering from three-dimensional perfectly conducting bodies of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 43, No. 2, 162-169, 1995.
doi:10.1109/8.366378 Google Scholar
2. Jakobus, U. and F. Landstorfer, "Improvement of the PO-MoM hybrid method by accounting for effects of perfectly conducting wedges," IEEE Trans. Antennas Propagat., Vol. 43, No. 10, 1123-1129, 1995.
doi:10.1109/8.467649 Google Scholar
3. Jakobus, U. and F. Landstorfer, "Application of Fock currents for curved convex surfaces within the framework of a current-based hybrid method," Third International Conference on Computation in Electromagnetics, 415-420, Bath, UK, Apr. 1996.
doi:10.1049/cp:19960223 Google Scholar
4. Hodges, R. and Y. Rahmat-Samii, "An iterative current-based hybrid method for complex structure," IEEE Trans. Antennas Propagat., Vol. 45, No. 2, 265-276, 1997.
doi:10.1109/8.560345 Google Scholar
5. Tasic, M. and B. Kolundzija, "Efficient analysis of large scatterers by physical optics driven method of moments," IEEE Trans. Antennas Propagat., Vol. 59, No. 8, 2905-2915, 2011.
doi:10.1109/TAP.2011.2158785 Google Scholar
6. Thiele, G. and T. Newhouse, "A hybrid technique for combining moment methods with the geometrical theory of diffraction," IEEE Trans. Antennas Propagat., Vol. 23, No. 1, 62-69, 1975.
doi:10.1109/TAP.1975.1141004 Google Scholar
7. Tzoulis, A. and T. Eibert, "A hybrid FEBI-MLFMM-UTD method for numerical solutions of electromagnetic problems including arbitrarily shaped and electrically large objects," IEEE Trans. Antennas Propagat., Vol. 53, No. 10, 3358-3366, 2005.
doi:10.1109/TAP.2005.856348 Google Scholar
8. Kaye, M., P. Murthy, and G. Thiele, "An iterative method for solving scattering problems," IEEE Trans. Antennas Propagat., Vol. 33, No. 11, 1272-1279, 1985.
doi:10.1109/TAP.1985.1143510 Google Scholar
9. Murthy, P., K. Hill, and G. Thiele, "A hybrid-iterative method for scattering problems," IEEE Trans. Antennas Propagat., Vol. 34, No. 10, 1173-1180, 1986.
doi:10.1109/TAP.1986.1143738 Google Scholar
10. Obelleiro, F., J. Rodriguez, and R. Burkholder, "An iterative physical optics approach for analyzing the electromagnetic scattering by large open-ended cavities," IEEE Trans. Antennas Propagat., Vol. 43, No. 4, 356-361, 1995.
doi:10.1109/8.376032 Google Scholar
11. Burkholder, R., "A fast and rapidly convergent iterative physical optics algorithm for computing the RCS of open-ended cavities," Appl. Computational Electromagn. Soc. J., Vol. 16, No. 1, 53-60, 2001. Google Scholar
12. Lu, C. and W. Chew, "Fast far-field approximation for calculating the RCS of large objects," Microwave Opt. Tech. Letters, Vol. 8, No. 5, 238-241, 1995.
doi:10.1002/mop.4650080506 Google Scholar
13. Gibson, W., The Method of Moments in Electromagnetics, Chapman & Hall/CRC, Boca Raton, 2008.
14. Kang, G., J. Song, W. Chew, K. Donepudi, and J. Jin, "A novel grid-robust higher order vector basis function for the method of moments," IEEE Trans. Antennas Propagat., Vol. 49, No. 6, 908-915, 2001.
doi:10.1109/8.931148 Google Scholar
15. Burkholder, R. and T. Lundin, "Forward-backward iterative physical optics algorithm for computing the RCS of open-ended cavities," IEEE Trans. Antennas Propagat., Vol. 53, No. 2, 793-799, 2005.
doi:10.1109/TAP.2004.841317 Google Scholar
16., https://www.cst.com/Products/CSTMWS.
doi:10.1109/TAP.2004.841317 Google Scholar
17. Woo, A., H. Wang, M. Schuh, and M. Sanders, "Benchmark radar targets for the validation of computational electromagnetics programs," IEEE Antennas Propagat. Mag., Vol. 35, No. 1, 84-89, 1993.
doi:10.1109/74.210840 Google Scholar