Vol. 55
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-01-29
Ultra-Compact Electromagnetic Metamaterial Transmission Line and Its Application in Miniaturized Butler Matrix
By
Progress In Electromagnetics Research C, Vol. 55, 187-197, 2014
Abstract
A novel super compact electromagnetic metamaterial transmission line (EM-MTM TL) is proposed in this paper by using the structure of symmetric double spiral lines (SDSLs). The investigation results indicate that the proposed EM-MTM TL not only has controllable resonant frequency, but also has very compact size, and the circuit area is only 8.8 mm×7.2 mm (equal to λ0/32.16×λ0/39.31, where λ0 is the free space wavelength at the resonant frequency) without the feed lines. Using the proposed structure, a 3-dB branch-line coupler and a 0-dB crossover operated at 0.86 GHz have been designed, fabricated and measured; the measured and simulated results are in good agreement. The two microwave devices realize 84.8% and 85.7% size reduction, respectively. Then, a compact Butler matrix is obtained by optimizing the combination of the branch-line couplers, 0 dB crossovers and 45-degree phase shifters. The measured and simulated results of the proposed Butler matrix agree well, showing that the proposed device operates at 0.86 GHz with very good electromagnetic performances. Moreover, the circuit area of the proposed Butler matrix is 109.0 mm×89.3 mm, which realizes at least 80.9% size reduction in comparison with the conventional one (whose circuit area is at least 226.2 mm×226.2 mm), and the miniaturization is considerable. Besides, these designed microwave devices, without any lumped elements, bonding wires, defected ground structure (DGS), and via-holes, are more suitable for modern wireless communication systems.
Citation
Minxian Du Huaxia Peng , "Ultra-Compact Electromagnetic Metamaterial Transmission Line and Its Application in Miniaturized Butler Matrix," Progress In Electromagnetics Research C, Vol. 55, 187-197, 2014.
doi:10.2528/PIERC14101802
http://www.jpier.org/PIERC/pier.php?paper=14101802
References

1. Yang, X. M., X. G. Liu, X. Y. Zhou, and T. J. Cui, "Reduction of mutual coupling between closely packed patch antennas using waveguided metamaterials," IEEE Antennas Wireless Propag. Lett., Vol. 11, 389-391, 2012.
doi:10.1109/LAWP.2012.2193111

2. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, May 2000.
doi:10.1103/PhysRevLett.84.4184

3. Shelby, R. A., D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial," Appl. Phys. Lett., Vol. 78, No. 4, 489-491, 2001.
doi:10.1063/1.1343489

4. Sanada, A., C. Caloz, and T. Itoh, "Planar distributed structures with negative refractive properties," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, 1252-1263, Apr. 2004.
doi:10.1109/TMTT.2004.825703

5. Eleftheriades, G. V., A. K. Iyer, and P. C. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 12, 2702-2712, 2002.
doi:10.1109/TMTT.2002.805197

6. Enkrich, C., M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at Telecommunication and visible frequencies," Phys. Rev. Lett., Vol. 95, 203901, 2005.
doi:10.1103/PhysRevLett.95.203901

7. Wu, G.-C., G.-M. Wang, Y.-W. Wang, and L.-Z. Hu, "A compact microstrip low-pass filter using D-CRLH transmission line with ultra-wide stopband and high selectivity," Radioengineering, Vol. 22, No. 3, 734-738, 2013.

8. Bonache, J., G. Sisó, M. Gil, A. Iniesta, J. Garcíarincón, and F. Martín, "Application of composite right/left-handed (CRLH) transmission lines based on complementary split ring resonators (CSRRs) to the design of dual-band microwave components," IEEE Microwave Wireless Component Letters, Vol. 18, No. 8, 524-526, 2008.
doi:10.1109/LMWC.2008.2001011

9. Wu, G., G. Wang, T. Li, and C. Zhou, "Novel dual-composite right/left-handed transmission line and its application to bandstop filter," Progress In Electromagnetics Research Letters, Vol. 37, 29-35, 2013.
doi:10.2528/PIERL12121101

10. Oliner, A. A., A periodic-structure negative-refractive-index medium without resonant elements, IEEE-AP-S USNC/URSI National Radio Science Meeting, 41, San Antonio, TX, 2002.

11. Ziolkowski, R. W., "Propagation in and scattering from a matched metamaterial having a zero index of refraction," Physical Review E, Vol. 70, 046608, 2004.
doi:10.1103/PhysRevE.70.046608

12. Ma, H. F., X. Chen, H. S. Xu, X. M. Yang, W. X. Jiang, and T. J. Cui, "Experiments on high-performance beam-scanning antennas made of gradient-index metamaterials," Appl. Phys. Lett., Vol. 95, 094107, 2009.
doi:10.1063/1.3223608

13. Assimonis, S. D., T. V. Yioultsis, and C. S. Antonopoulos, "Computational investigation and design of planar EBG structures for coupling reduction in antenna applications," IEEE Trans. Magn., Vol. 48, No. 2, 771-774, 2012.
doi:10.1109/TMAG.2011.2172680

14. Pendry, J. B., L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science, Vol. 305, 847, 2004.
doi:10.1126/science.1098999

15. Palandoken, M., A. Grede, and H. Henke, "Broadband microstrip antenna with left-handed metamaterials," IEEE Trans. Antennas Propag., Vol. 57, No. 2, 331-338, 2009.
doi:10.1109/TAP.2008.2011230

16. Bait-Suwailam, M. M., M. S. Boybay, and O. M. Ramahi, "Electromagnetic coupling reduction in high-profile monopole antennas using single-negative magnetic metamaterials for MIMO applications," IEEE Trans. Antennas Propag., Vol. 58, No. 9, 2894-2902, 2010.
doi:10.1109/TAP.2010.2052560

17. Xu, H.-X., G.-M. Wang, M.-Q. Qi, and H.-Y. Zeng, "Ultra-small single-negative electric metamaterials for electromagnetic coupling reduction of microstrip antenna array," Optics Express, Vol. 20, No. 20, 21968-21976, 2012.
doi:10.1364/OE.20.021968

18. Baena, J. D., R. Marques, F. Medina, and J. Martel, "Artificial magnetic metamaterial design by using spiral resonators," Physical Review B, Vol. 69, 144021-144025, 2004.

19. Erentok, A., R. W. Ziolkowski, J. A. Nielsen, R. B. Greegor, C. G. Parazzoli, M. H. Tanielian, S. A. Cummer, B.-I. Popa, T. Hand, D. C. Vier, and S. Schultz, "Low frequency lumped element-based negative index metamaterial," Appl. Phys. Lett., Vol. 91, 184104, 2007.
doi:10.1063/1.2803771

20. Yousefi, L. and O. M. Ramahi, "Artificial magnetic materials using fractal hilbert curves," IEEE Trans. Antennas Propag., Vol. 58, No. 8, 2614-2622, 2010.
doi:10.1109/TAP.2010.2050438

21. Chen, W.-L., G.-M. Wang, and C.-X. Zhang, "Fractal-shaped switched beam antenna with reduced size and broadside beam," Electronics Letters, Vol. 44, No. 19, 1110-1111, 2008.
doi:10.1049/el:20081502

22. Wang, C.-W., T.-G. Ma, and C.-F. Yang, "A new planar artificial transmission line and its applications to a miniaturized Butler matrix," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 12, 2792-2801, 2007.
doi:10.1109/TMTT.2007.909474

23. Xu, H.-X., G.-M. Wang, and X. Wan, "Compact Butler matrix using composite right/left handed transmission line," Electronics Letters, Vol. 47, No. 19, 978-979, 2011.
doi:10.1049/el.2011.2135

24. Gruszczynski, S., K. Wincza, and K. Sachse, "Compact broadband Butler matrix in multilayer technology for integrated multibeam antennas," Electronics Letters, Vol. 43, No. 11, 635-636, 2007.
doi:10.1049/el:20070613

25. Kholodniak, D., et al., Wideband 0-dB branch-line directional couplers, IEEE MTT-S International Microwave Symposium Digest, 1307-1310, Boston, MA, USA, 2000.

26. Lu, K., G. M. Wang, C. X. Zhang, and Y. W. Wang, "Design of miniaturized branch-line coupler based on novel spiral-based resonators," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 16, 2244-2253, 2011.
doi:10.1163/156939311798147024

27. Zong, B.-F., Research on applications of miniaturized microstrip resonator, 59-62 Master Dissertation of Air Force Engineering University, Xi’an, China, 2012.

28. Lin, G., Investigations into distributed composite right/left-handed transmission line structures and their applications, 98-104 Doctor Dissertation of Air Force Engineering University, Xi’an, China, 2013.

29. Wang, J., B.-Z.Wang, Y.-X. Guo, L. C. Ong, and S. Xiao, "A compact slow-wave microstrip branch-line coupler with high performance," IEEE Microwave Wireless Component Letters, Vol. 17, No. 7, 501-503, 2007.
doi:10.1109/LMWC.2007.899307

30. Chen, W.-L., Investigations into the applications of fractal geometry in microwave engineering, 70-75 Doctor Dissertation of Air Force Engineering University, Xi’an, China, 2008.

31. Yu, Z.-W., Investigations on planar monopulse antenna array and feed netwok system, 49-54 Doctor Dissertation of Air Force Engineering University, Xi’an, China, 2012.

32. Zheng, S. and W. S. Chan, "Compact Butler matrix using size reduced elements," Microwave and Optical Technology Letters, Vol. 49, No. 7, 1519-1521, 2007.
doi:10.1002/mop.22489