Vol. 42
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-04-05
Investigation of Antenna Array Configurations Using Far-Field Holographic Microwave Imaging Technique
By
Progress In Electromagnetics Research M, Vol. 42, 1-11, 2015
Abstract
Biomedical imaging has played an important role in identifying and monitoring the effectiveness of the current state of the art treatments for many diseases. The authors recently proposed a novel single-transmitter-multiple-receiver holographic microwave imaging (HMI) technique for imaging small inclusion embedded in a dielectric object which has potential application in medical diagnostics. HMI image quality depends highly on the antenna baseline difference, in order words, the antenna array configuration. Different antenna arrays produce different quality of dielectric images by using HMI imaging algorithm. This paper investigates the antenna array configurations effect on image quality by using HMI imaging approach. Three configurations including spiral, random and regularly spaced arrays are presented in this paper. Both simulated and experimental results are obtained and compared to fully demonstrate the effectiveness of antenna arrays to the HMI technique. The results show that the proposed spiral and random array configurations have an ability to produce high-resolution images at significantly lower costs than regularly spaced arrays.
Citation
Lulu Wang Ahmed M. Al-Jumaily Ray Simpkin , "Investigation of Antenna Array Configurations Using Far-Field Holographic Microwave Imaging Technique," Progress In Electromagnetics Research M, Vol. 42, 1-11, 2015.
doi:10.2528/PIERM15011803
http://www.jpier.org/PIERM/pier.php?paper=15011803
References

1. Ghavami, N., G. Tiberi, D. J. Edwards, and A. Monorchio, "UWB microwave imaging of objects with canonical shape," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 231-239, 2012.
doi:10.1109/TAP.2011.2167905

2. Meaney, P. M., M.W. Fanning, T. Raynolds, C. J. Fox, Q. Fang, C. A. Kogel, and K. D. Paulsen, "Initial clinical experience with microwave breast imaging in women with normal mammography," Academic Radiology, Vol. 14, No. 2, 207-218, 2007.
doi:10.1016/j.acra.2006.10.016

3. Bond, E. J., X. Li, S. C. Hagness, and B. D. Van Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 8, 1690-1705, 2003.
doi:10.1109/TAP.2003.815446

4. Fear, E. C., J. Bourqui, C. Curtis, D. Mew, B. Docktor, and C. Romano, "Microwave breast imaging with a monostatic radar-based system: A study of application to patients," IEEE Trans. on Microwave Theory and Techniques, Vol. 61, No. 5, 2119-2128, 2013.
doi:10.1109/TMTT.2013.2255884

5. Hagness, S. C., A. Taflove, and J. E. Bridges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors," IEEE Transactions on Biomedical Engineering, Vol. 45, No. 12, 1470-1479, 1998.
doi:10.1109/10.730440

6. Li, X. and S. C. Hagness, "A confocal microwave imaging algorithm for breast cancer detection," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 3, 130-132, 2001.
doi:10.1109/7260.915627

7. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Transactions on Biomedical Engineering, Vol. 49, No. 8, 812-822, 2002.
doi:10.1109/TBME.2002.800759

8. Rubæk, T., O. S. Kim, and P. Meincke, "Computational validation of a 3-D microwave imaging system for breast-cancer screening," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 7, 2105-2115, 2009.
doi:10.1109/TAP.2009.2021879

9. Semenov, S. Y., A. E. Bulyshev, A. Abubakar, V. G. Posukh, Y. E. Sizov, A. E. Souvorov, and T. C. Williams, "Microwave-tomographic imaging of the high dielectric-contrast objects using different image-reconstruction approaches," IEEE Trans. on Microwave Theory and Techniques, Vol. 53, No. 7, 2284-2294, 2005.
doi:10.1109/TMTT.2005.850459

10. O’Halloran, M., M. Glavin, and E. Jones, "Rotating antenna microwave imaging system for breast cancer detection," Progress In Electromagnetics Research, Vol. 107, 203-217, 2010.
doi:10.2528/PIER10071002

11. Wang, L., A. M. Al-Jumaily, and R. Simpkin, "Holographic microwave imaging array for brain stroke detection," Journal of Signal and Information Processing, Vol. 4, No. 3B, 96-101, 2013.
doi:10.4236/jsip.2013.43B017

12. Wang, L., R. Simpkin, and A. M. Al-Jumaily, "Holographic microwave imaging for medical applications," Journal of Biomedical Science and Engineering, Vol. 6, 823-833, 2013.
doi:10.4236/jbise.2013.68100

13. Wang, L., A. M. Al-Jumaily, and R. Simpkin, "Imaging of 3-D dielectric objects using far-field holographic microwave imaging technique," Progress In Electromagnetics Research B, Vol. 61, 135-147, 2014.
doi:10.2528/PIERB14082001

14. Wang, L., R. Simpkin, and A. M. Al-Jumaily, "Three-dimensional far-field holographic microwave imaging: An experimental investigation of dielectric object," Progress In Electromagnetics Research B, Vol. 61, 169-184, 2014.
doi:10.2528/PIERB14101502

15. Klemm, M., J. A. Leendertz, D. Gibbins, I. J. Craddock, A. Preece, and R. Benjamin, "Microwave radar-based differential breast cancer imaging: Imaging in homogeneous breast phantoms and low contrast scenarios," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2337-2344, 2010.
doi:10.1109/TAP.2010.2048860

16. Klemm, M., D. Gibbins, J. Leendertz, T. Horseman, A.W. Preece, R. Benjamin, and I. J. Craddock, "Development and testing of a 60-element UWB conformal array for breast cancer imaging," Proc. 5th European Conf. Antennas and Propagation (EuCAP), 3077-3079, 2011.

17. Damez, J. L. and S. Clerjon, "Quantifying and predicting meat and meat products quality attributes using electromagnetic waves: An overview," Meat Science, Vol. 95, No. 4, 879-896, 2013.
doi:10.1016/j.meatsci.2013.04.037

18. Hu, T., Z. Xiao, J. Xu, and L. Wu, "Methods of personnel screening for concealed contraband detection by millimeter-wave radiometric imaging," Procedia Engineering, Vol. 7, 28-37, 2010.
doi:10.1016/j.proeng.2010.11.005