Vol. 57
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-04-20
Impact of Feeding Location on on-Body Performance of Small On-Ground Antennas
By
Progress In Electromagnetics Research C, Vol. 57, 53-60, 2015
Abstract
In this paper, three commonly used on-ground antenna types (loop, monopole and planar inverted-F antenna) are compared in the scope of wireless body area networks (WBAN) for on-body communications at 2.45 GHz. The bandwidth of the antennas can be enhanced by placing them towards the edge or the corner of the small ground plane (25 × 35 mm2) which has, as a consequence, detrimental effects on radiation characteristics that motivates the examination of the impact of feeding location for on-body propagation in detail. The present study quantifies the trade-off between on-body efficiency, the gain in the direction tangential to the surface, applicability to launch creeping waves and bandwidth potential of the different antenna types with various feeding locations. The simulated channel gain |S11| around tissue-equivalent numerical phantoms is compared to an analytical WBAN path loss model.
Citation
Tommi Tuovinen, Markus Berg, and William G. Whittow, "Impact of Feeding Location on on-Body Performance of Small On-Ground Antennas," Progress In Electromagnetics Research C, Vol. 57, 53-60, 2015.
doi:10.2528/PIERC15020602
References

1. "IEEE standard for local and metropolitan area networks,", IEEE 802.15.6-2012 — Part 15.6: Wireless Body Area Networks, 2012.        Google Scholar

2. Hall, P. S. and Y. Hao, Antennas and Propagation for Body-Centric Wireless Communications, 2nd edition, Artech House, Norwood, 2012.
doi:10.1109/LAWP.2011.2161744

3. Alves, T., B. Poussot, and J.-M. Laheurte, "PIFA-top-loaded-monopole antenna with diversity features for WBAN applications," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 693-696, 2011.
doi:10.1109/TAP.2009.2014525        Google Scholar

4. Conway, G. A. and W. G. Scanlon, "Antennas for over-body-surface communication at 2.45 GHz," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 844-855, 2009.
doi:10.1109/TAP.1986.1143865        Google Scholar

5. Paknys, R. and N. Wang, "Creeping wave propagation constants and modal impedance for a dielectric coated cylinder," IEEE Trans. Antennas Propag., Vol. 34, No. 5, 674-680, 1986.
doi:10.1109/TAP.2010.2096184        Google Scholar

6. Alves, T., B. Poussot, and J.-M. Laheurte, "Analytical propagation modeling of BAN channels based on the creeping-wave theory," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 1269-1274, 2011.
doi:10.1109/TAP.2009.2025786        Google Scholar

7. Fort, A., F. Keshmiri, G. R. Crusats, C. Craeye, and C. Oestges, "A body area propagation model derived from fundamental principles: Analytical analysis and comparison with measurements," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 503-514, 2010.
doi:10.1109/TAP.2012.2207038        Google Scholar

8. Lin, C. H., K. Saito, M. Takahashi, and K. Ito, "A compact planar inverted-F antenna for 2.45GHz on-body communications," IEEE Trans. Antennas Propag., Vol. 60, No. 9, 4422-4426, 2012.
doi:10.1109/TAP.2011.2167950        Google Scholar

9. Soh, P. J., G. A. E. Vandenbosch, S. L. Ooi, and N. H. M. Rais, "Design of a broadband all-textile slotted PIFA," IEEE Trans. Antennas Propag., Vol. 60, No. 1, 379-384, 2012.        Google Scholar

10. Kvist, S. H., J. Thaysen, and K. J. Jakobsen, "Polarization of unbalanced antennas for ear-to-ear on-body communications at 2.45GHz," Proc. 7th Loughborough Antennas Propag. Conf. (LAPC), 1-4, United Kingdom, Nov. 2011.        Google Scholar

11. Khandra, R. and A. J. Johansson, "Influence on the ear-to ear link loss from heterogeneous propagation channel," Proc. 5th Europ. Conf. Antennas Propag. (EuCAP), 1612-1615, Rome, Italy, Apr. 2014.        Google Scholar

12. Grimm, M. and D. Manteuffel, "Far field modeling of body worn antennas by the superposition of equivalent electric sources," Proc. 8th Europ. Conf. Antennas Propag., 1754-1755, Hague, Netherlands, Apr. 2014.        Google Scholar

13. Tuovinen, T., M. Berg, and E. Salonen, "The effect of antenna pattern and polarization for launching creeping waves on a skin surface," Proc. Europ. Conf. Antennas Propag. (EuCAP), 1960-1963, Netherlands, Apr. 2014.
doi:10.1109/LAWP.2014.2351071        Google Scholar

14. Tuovinen, T., M. Berg, and E. Salonen, "Antenna close to tissue: avoiding radiation pattern minima with anisotropic substrate," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1680-1683, 2014.
doi:10.1109/TAP.2014.2307347        Google Scholar

15. Grimm, M. and D. Manteuffel, "Norton surfaces waves in the scope of body area networks," IEEE Trans. Antennas Propag., Vol. 62, No. 5, 2616-2623, 2014.        Google Scholar

16. Bluetooth low energy regulatory aspects, bluetooth SIG regulatory committee, , V10r00, 2011.        Google Scholar

17. Tuovinen, T., M. Berg, W. G. Whittow, and E. Salonen, "Performance of WBAN on-ground antenna type with relation to analytical path loss model," Proc. of 10th Loughborough Antennas Propag. Conf. (LAPC), UK, 2014.
doi:10.1109/LAWP.2011.2163290        Google Scholar

18. Ilvonen, J., O. Kivek¨as, J. Holopainen, R. Valkonen, K. Rasilainen, and P. Vainikainen, "Mobile terminal antenna performance with the user’s hand: Effect of antenna dimensioning and location," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 772-775, 2011.
doi:10.1109/TAP.2002.802085        Google Scholar

19. Vainikainen, P., J. Ollikainen, O. Kivek¨as, and I. Kelander, "Resonator-based analysis of the combination of mobile handset antenna and chassis," IEEE Trans. Antennas Propag., Vol. 50, No. 10, 1433-1444, 2002.
doi:10.1109/TIM.2007.903591        Google Scholar

20. Krogerus, J., J. Toivanen, C. Icheln, and P. Vainikainen, "Effect of the human body on total radiated power and the 3-D radiation pattern of mobile handsets," IEEE Trans. Instrum. Meas., Vol. 56, No. 6, 2375-2385, 2007.
doi:10.1109/TIM.2007.903591        Google Scholar

21. Computer Simulation Technology Microwave Studio Software, Online Available: http://www.cst.com, .        Google Scholar