1. Raychaudhuri, D. and N. B. Mandayam, "Frontiers of wireless and mobile communications," Proc. IEEE, Vol. 100, No. 4, 824-840, 2012.
doi:10.1109/JPROC.2011.2182095 Google Scholar
2. Raab, H., P. Asbeck, S. Cripps, P. B. Kenington, Z. B. Popovic, N. Pothecary, J. F. Sevic, and N. O. Sokal, "Power amplifiers and transmitters for RF and microwave," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 3, 814-826, 2002.
doi:10.1109/22.989965 Google Scholar
3. Cripps, S., RF Power Amplifiers for Wireless Communications, Artech House, Norwood, 2006.
4. Piazzon, L., R. Giofre, P. Colantonio, and F. Giannini, "A method for designing broadband Doherty power amplifiers," Progress In Electromagnetics Research, Vol. 145, 319-331, 2014.
doi:10.2528/PIER14011301 Google Scholar
5. Kim, J. and Y. Park, "Design of a compact and broadband inverse class-F-1 power amplifier," Progress In Electromagnetics Research C, Vol. 46, 75-81, 2014.
doi:10.2528/PIERC13112404 Google Scholar
6. Kenington, P. B., High Linearity RF Amplifier Design, Artech House, Norwood, 2000.
7. Pedro, J. C. and S. A. Maas, "A comparative overview of microwave and wireless power-amplifier behavioral modeling approaches," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 4, 1150-1163, 2005.
doi:10.1109/TMTT.2005.845723 Google Scholar
8. Wang, H., H. Ma, and J. Chen, "A multi-status behavioral model for the elimination of electrothermal memory effect in DPD system," Progress In Electromagnetics Research C, Vol. 47, 103-109, 2014.
doi:10.2528/PIERC13112803 Google Scholar
9. Sun, G., C. Yu, Y. Liu, S. Li, and J. Li, "An accurate complexity-reduced simplified Volterra series for RF power amplifiers," Progress In Electromagnetics Research C, Vol. 47, 157-166, 2014.
doi:10.2528/PIERC13121201 Google Scholar
10. Liu, T., S. Boumaiza, and F. M. Ghannouchi, "Dynamic behavioral modeling of 3G power amplifiers using real-valued time-delay neural networks," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 3, 1025-1033, 2004.
doi:10.1109/TMTT.2004.823583 Google Scholar
11. Isaksson, M., D. Wisell, and D. Ronnow, "Wide-band dynamic modeling of power amplifiers using radial-basis function neural networks," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 11, 3422-3428, 2005.
doi:10.1109/TMTT.2005.855742 Google Scholar
12. Lima, E. G., T. R. Cunha, and J. C. Pedro, "A physically meaningful neural network behavioral model for wireless transmitters exhibiting PM-AM/PM-PM distortions," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 12, 3512-3521, 2011.
doi:10.1109/TMTT.2011.2171709 Google Scholar
13. Chipansky Freire, L. B., C. de Franca, and E. G. de Lima, "Low-pass equivalent behavioral modeling of RF power amplifiers using two independent real-valued feed-forward neural networks," Progress In Electromagnetics Research C, Vol. 52, 125-133, 2014.
doi:10.2528/PIERC14070207 Google Scholar
14. Jeruchim, M. C., P. Balaban, and K. S. Shanmugan, Simulation of Communication Systems --- Modeling, Methodology, and Techniques, Kluwer Academic/Plenum Publishers, New York, 2000.
15. Benedetto, S., E. Biglieri, and R. Daffara, "Modeling and performance evaluation of nonlinear satellite links — A Volterra series approach," IEEE Trans. Aerosp. Electron. Syst., Vol. 15, No. 4, 494-507, 1979.
doi:10.1109/TAES.1979.308734 Google Scholar
16. Haykin, S., Neural Networks: A Comprehensive Foundation, Prentice Hall, New Jersey, 1999.
17. Chen, S., C. F. N. Cowan, and P. M. Grant, "Orthogonal least squares learning algorithm for radial basis function networks," IEEE Trans. Neural Netw., Vol. 2, No. 2, 302-309, 1991.
doi:10.1109/72.80341 Google Scholar
18. Isaksson, M., D. Wisell, and D. Ronnow, "A comparative analysis of behavioral models for RF power amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 1, 348-359, 2006.
doi:10.1109/TMTT.2005.860500 Google Scholar