Vol. 57
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-04-17
A Modfied Real-Valued Feed-Forward Neural Network Low-Pass Equivalent Behavioral Model for RF Power Amplfiers
By
Progress In Electromagnetics Research C, Vol. 57, 43-52, 2015
Abstract
This work addresses the low-pass equivalent behavioral modeling of radio frequency (RF) power amplifiers (PAs) for modern wireless communication systems. Similar to a previous approach, here the PA behavioral modeling is based on two independent real-valued feed-forward artificial neural networks (ANNs). A careful analysis is first presented to show that the nonlinear training algorithm for the previous ANN-based approach can be easily trapped into local minima, especially for the ANN that estimates the polar angle component of a complex-valued signal. Then, a modified ANNbased model is proposed to eliminate the local minimum problem, in this way significantly improving the modeling accuracy. Indeed, in the proposed model the two real-valued ANNs are responsible for estimating the in-phase and quadrature components of a complex-valued base-band signal. When applied to the behavioral modeling of a GaN HEMT class AB PA, the proposed ANN-based model reduces normalized mean-square error (NMSE) by up to 2.2 dB, in comparison with the previous ANN-based model having an equal number of network parameters.
Citation
Luiza Beana Chipansky Freire Caroline De Franca Eduardo Goncalves de Lima , "A Modfied Real-Valued Feed-Forward Neural Network Low-Pass Equivalent Behavioral Model for RF Power Amplfiers," Progress In Electromagnetics Research C, Vol. 57, 43-52, 2015.
doi:10.2528/PIERC15022802
http://www.jpier.org/PIERC/pier.php?paper=15022802
References

1. Raychaudhuri, D. and N. B. Mandayam, "Frontiers of wireless and mobile communications," Proc. IEEE, Vol. 100, No. 4, 824-840, 2012.
doi:10.1109/JPROC.2011.2182095

2. Raab, H., P. Asbeck, S. Cripps, P. B. Kenington, Z. B. Popovic, N. Pothecary, J. F. Sevic, and N. O. Sokal, "Power amplifiers and transmitters for RF and microwave," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 3, 814-826, 2002.
doi:10.1109/22.989965

3. Cripps, S., RF Power Amplifiers for Wireless Communications, Artech House, Norwood, 2006.

4. Piazzon, L., R. Giofre, P. Colantonio, and F. Giannini, "A method for designing broadband Doherty power amplifiers," Progress In Electromagnetics Research, Vol. 145, 319-331, 2014.
doi:10.2528/PIER14011301

5. Kim, J. and Y. Park, "Design of a compact and broadband inverse class-F-1 power amplifier," Progress In Electromagnetics Research C, Vol. 46, 75-81, 2014.
doi:10.2528/PIERC13112404

6. Kenington, P. B., High Linearity RF Amplifier Design, Artech House, Norwood, 2000.

7. Pedro, J. C. and S. A. Maas, "A comparative overview of microwave and wireless power-amplifier behavioral modeling approaches," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 4, 1150-1163, 2005.
doi:10.1109/TMTT.2005.845723

8. Wang, H., H. Ma, and J. Chen, "A multi-status behavioral model for the elimination of electrothermal memory effect in DPD system," Progress In Electromagnetics Research C, Vol. 47, 103-109, 2014.
doi:10.2528/PIERC13112803

9. Sun, G., C. Yu, Y. Liu, S. Li, and J. Li, "An accurate complexity-reduced simplified Volterra series for RF power amplifiers," Progress In Electromagnetics Research C, Vol. 47, 157-166, 2014.
doi:10.2528/PIERC13121201

10. Liu, T., S. Boumaiza, and F. M. Ghannouchi, "Dynamic behavioral modeling of 3G power amplifiers using real-valued time-delay neural networks," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 3, 1025-1033, 2004.
doi:10.1109/TMTT.2004.823583

11. Isaksson, M., D. Wisell, and D. Ronnow, "Wide-band dynamic modeling of power amplifiers using radial-basis function neural networks," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 11, 3422-3428, 2005.
doi:10.1109/TMTT.2005.855742

12. Lima, E. G., T. R. Cunha, and J. C. Pedro, "A physically meaningful neural network behavioral model for wireless transmitters exhibiting PM-AM/PM-PM distortions," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 12, 3512-3521, 2011.
doi:10.1109/TMTT.2011.2171709

13. Chipansky Freire, L. B., C. de Franca, and E. G. de Lima, "Low-pass equivalent behavioral modeling of RF power amplifiers using two independent real-valued feed-forward neural networks," Progress In Electromagnetics Research C, Vol. 52, 125-133, 2014.
doi:10.2528/PIERC14070207

14. Jeruchim, M. C., P. Balaban, and K. S. Shanmugan, Simulation of Communication Systems --- Modeling, Methodology, and Techniques, Kluwer Academic/Plenum Publishers, New York, 2000.

15. Benedetto, S., E. Biglieri, and R. Daffara, "Modeling and performance evaluation of nonlinear satellite links — A Volterra series approach," IEEE Trans. Aerosp. Electron. Syst., Vol. 15, No. 4, 494-507, 1979.
doi:10.1109/TAES.1979.308734

16. Haykin, S., Neural Networks: A Comprehensive Foundation, Prentice Hall, New Jersey, 1999.

17. Chen, S., C. F. N. Cowan, and P. M. Grant, "Orthogonal least squares learning algorithm for radial basis function networks," IEEE Trans. Neural Netw., Vol. 2, No. 2, 302-309, 1991.
doi:10.1109/72.80341

18. Isaksson, M., D. Wisell, and D. Ronnow, "A comparative analysis of behavioral models for RF power amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 1, 348-359, 2006.
doi:10.1109/TMTT.2005.860500