Vol. 57
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-04-21
A New Class of Compact Linear Printed Antennas
By
Progress In Electromagnetics Research C, Vol. 57, 61-69, 2015
Abstract
A new miniaturization methodology suitable for printed linear antennas is presented. Miniaturization is accomplished by replacing a linear radiator element of a conventional antenna with a compact continuously varying-impedance profile governed by a truncated Fourier series. A design example of a printed half-wavelength dipole antenna is designed and realized in microstrip technology. The performance of the proposed antenna is compared with its equivalent uniform dipole to highlight the performance equivalency. With a 25% reduction in the dipole arm length, both antennas show a measured peak gain and a fractional bandwidth of 5.4 dBi and 16%, respectively at 2.5 GHz; hence, the overall electrical performance is preserved. It will be shown that the design procedure is systematic and accurate. The proposed approach has potential for achieving advanced frequency characteristics, such as broad- and multi-band antenna responses.
Citation
Mohammad Almalkawi Khair Alshamaileh Said A. Abushamleh Hussain M. Al-Rizzo , "A New Class of Compact Linear Printed Antennas," Progress In Electromagnetics Research C, Vol. 57, 61-69, 2015.
doi:10.2528/PIERC15032103
http://www.jpier.org/PIERC/pier.php?paper=15032103
References

1. Colburn, J. and Y. Rahmat-Samii, "Patch antennas on externally perforated high dielectric constant substrates," IEEE Trans. on Antennas Propag., Vol. 47, No. 12, 1785-1794, Dec. 1999.
doi:10.1109/8.817654

2. Byungje, L. and F. J. Harackiewicz, "Miniature microstrip antenna with a partially filled high-permittivity substrate," IEEE Trans. on Antennas and Propag., Vol. 50, No. 8, 1160-1162, Aug. 2002.
doi:10.1109/TAP.2002.801360

3. Antoniades, M. and G. Eleftheriades, "Multiband compact printed dipole antennas using NRI-TL metamaterial loading," IEEE Trans. on Antennas and Propag., Vol. 60, No. 12, 5613-5626, Dec. 2012.
doi:10.1109/TAP.2012.2211324

4. Sigalas, M. M., R. Biswas, and K.-M. Ho, "Theoretical study of dipole antennas on photonic band-gap materials," Microw. Opt. Technol. Lett., Vol. 13, No. 4, 205-209, 1996.
doi:10.1002/(SICI)1098-2760(199611)13:4<205::AID-MOP9>3.0.CO;2-Q

5. Eldek, A., "A miniaturized patch antenna at 2.4GHz using uni-planar compact photonic band gap structure," Microw. Opt. Technol. Lett., Vol. 50, No. 5, 1360-1363, 2008.
doi:10.1002/mop.23381

6. Azad, M. and M. Ali, "A new class of miniature embedded inverted-F antennas (IFAs) for 2.4GHz WLAN application," IEEE Trans. Antennas Propag., Vol. 54, No. 9, 2585-2592, Sept. 2006.
doi:10.1109/TAP.2006.880710

7. Bayraktar, Z., M. Komurcu, Z. Jiang, D. Werner, and P. Werner, "Stub-loaded inverted-F antenna synthesis via wind driven optimization," IEEE Int. Symposium on Antennas and Propag., Vol. 2920, No. 2923, Spokane, Washington, Jul. 2011.

8. Chair, R., K. M. Luk, and K.-F. Lee, "Miniature multilayer shorted patch antenna," Electronics Lett., Vol. 36, No. 1, 3-4, Jan. 2000.
doi:10.1049/el:20000029

9. Zhang, Y. and H.-Y. Yang, "Miniaturized printed folded dipole antennas," IEEE Antennas and Propag. Society International Symposium, 1-4, Jun. 2009.
doi:10.1155/2009/830931

10. Kim, J., M. Nagatoshi, and H. Morishita, "Study on miniaturization of a strip folded dipole antenna with two linear conductors," Proc. the 5th European Conference on Antennas and Propag., 342-345, Rome, Italy, Apr. 2011.

11. Boone, J., S. Krishnan, E. Stefanakos, Y. Goswami, and S. Bhansali, "Coplanar-waveguide-fed folded dipole slot antenna for wireless local area network applications and V-band frequency operations," IET Microw., Antennas & Propag., Vol. 6, No. 5, 583-587, Apr. 2012.
doi:10.1049/iet-map.2011.0473

12. Chang, M.-C. and W.-C. Weng, "A dual-band printed dipole slot antenna for 2.4/5.2GHz WLAN applications," IEEE Int. Symposium on Antennas and Propag., 274-277, Spokane, Washington, Jul. 2011.

13. Oraizi, H. and S. Hedayati, "Miniaturization of microstrip antennas by the novel application of the Giuseppe Peano fractal geometries," IEEE Trans. Antennas Propag., Vol. 60, No. 8, 3559-3567, Aug. 2012.
doi:10.1109/TAP.2012.2201070

14. Herscovici, N., M. Osorio, and C. Peixeiro, "Miniaturization of rectangular microstrip patches using genetic algorithms," IEEE Antennas Wireless Propag. Lett., Vol. 1, No. 1, 94-97, 2002.
doi:10.1109/LAWP.2002.805128

15. Rengarajan, S. R. and Y. Rahmat-Samii, "On the cross-polarization characteristics of crooked wire antennas designed by genetic algorithms," IEEE Int. Symp. on Antennas and Propagation Society, Vol. 1, 706-709, 2002.

16. Skrivervik, A.K., J.-F. Z¨urcher, O. Staub, and J. R. Mosig, "PCS antenna design: the challenge of miniaturization," IEEE Antennas Propag. Mag., Vol. 43, No. 4, 12-27, Aug. 2001.
doi:10.1109/74.951556

17. Bancroft, R., "Fundamental dimension limits of antennas ensuring proper antenna dimensions in mobile device designs," Centurion Wireless Technologies, Westminster, CO..

18. Pozar, D. M., Microwave Engineering, 4th Edition, John Wiley & Sons, Inc., Hoboken, NJ , 2011.

19. Campbell, C. K., I. Traboulay, M. S. Suthers, and H. Kneve, "Design of a stripline log-periodic dipole antenna," IEEE Trans. Antennas Propag., Vol. 25, No. 5, 718-721, Sept. 1977.
doi:10.1109/TAP.1977.1141653

20. Khalaj-Amirhosseini, M., "Nonuniform transmission lines as compact uniform transmission lines," Progross In Electromagnetics Research C, Vol. 4, 211, 2008.

21. Li, Y., "Centering, trust region, reflective techniques for nonlinear minimization subject to bounds,", Technical Report 93-1385, Cornell University, NY, USA, Sept. 1993.

22. ANSYS-High Frequency Structure Simulator (HFSS), Ansys, Inc., Canonsburg, PA, 2011, .

23. Caratelli, D., R. Cicchetti, G. Bit-Babik, and A. Faraone, "Circuit model and near-field behavior of a novel patch antenna for WWLAN applications," Microwave and Optical Technology Letters, Vol. 49, No. 1, 97-100, Jan. 2007.
doi:10.1002/mop.22057