Vol. 57
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-04-17
A Compact Dual-Mode Metamaterial-Inspired Antenna Using Rectangular Type CSRR
By
Progress In Electromagnetics Research C, Vol. 57, 35-42, 2015
Abstract
In this paper a compact planar dual-mode metamaterial (MTM) antenna using rectangular type complementary split ring resonator (CSRR) is proposed. It is observed that an increase in series capacitance tends to decrease resonant frequency at which n = 1 mode is obtained in the proposed antenna. Zeroth order mode (ZOR) is obtained by means of rectangular type CSRR, tends to provide the miniaturized area. Dispersion relations are shown in order to characterize the metamaterial behavior by extracting the equivalent circuit parameters. The resonant frequency of the antenna is 2.14 GHz with input reflection coefficient up to -45 dB. The electrical size of the proposed MTM antenna is 0.321λ0 × 0.285λ0 × 0.011λ0. ZOR mode is observed at 1.15 GHz although the proposed antenna is operated at 2.14 GHz. Furthermore, it achieves simulated antenna gain of 2.60 dB with 70% radiation efficiency. In order to verify the simulation results of antenna, a prototype is fabricated and measured.
Citation
Ashish Gupta, Sameer Kumar Sharma, and Raghvendra Kumar Chaudhary, "A Compact Dual-Mode Metamaterial-Inspired Antenna Using Rectangular Type CSRR," Progress In Electromagnetics Research C, Vol. 57, 35-42, 2015.
doi:10.2528/PIERC15032304
References

1. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
doi:10.1126/science.1058847

2. Caloz, C. and T. Itoh, "Novel microwave devices and structures based on the transmission line approach of metamaterials," IEEE-MTT Int. Symp., Vol. 1, 195-198, Philadelphia, PA, USA, Jun. 2003.

3. Sanada, A., C. Caloz, and T. Itoh, "Novel zeroth order resonance in composite right/left-handed transmission line resonators," Asia-Pacific Microwave Conference, Seoul, Korea, Nov. 2003.

4. Niu, B. J. and Q. Fang, "Bandwidth enhancement of CPW-fed antenna based on epsilon negative zeroth and first-order resonators," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1125-1128, 2013.
doi:10.1109/LAWP.2013.2280952

5. Kim, T. G. and B. Lee, "Metamaterial based compact zeroth order resonant antenna," Electronics Letters, Vol. 45, No. 1, 12-13, 2009.
doi:10.1049/el:20092715

6. Dong, Y. and T. Itoh, "Miniaturized substrate integrated waveguide slot antennas based on negative zeroth order resonance," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 12, 3856-3864, 2010.
doi:10.1109/TAP.2010.2078449

7. Antoniades, M. A. and G. V. Eleftheriades, "A folded-monopole model for electrically small NRITL metamaterial antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 425-428, 2008.
doi:10.1109/LAWP.2008.2008773

8. Schubler, M., J. Freese, and R. Jakoby, "of compact planar antennas using LH-transmission lines," IEEE MTT-S Int. Microw. Symp. Dig., 209-212, Fort Worth, TX, Jun. 2004.

9. Ha, J., K. Kwon, Y. Lee, and J. Choi, "Hybrid mode wideband patch antenna loaded with a planar metamaterial unit cell," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 1143-1147, 2012.
doi:10.1109/TAP.2011.2173114

10. Jang, T., J. Choi, and S. Lim, "Compact coplanar waveguide (CPW)-fed zeroth-order resonant antennas with extended bandwidth and high efficiency on a vialess single layer," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 2, 363-372, 2011.
doi:10.1109/TAP.2010.2096191

11. Niu, B. J. and Q. Y. Feng, "Bandwidth enhancement of asymmetric coplanar waveguide (ACPW)-fed antenna based on composite right/left handed transmission line," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 563-566, 2013.
doi:10.1109/LAWP.2013.2260522

12. Singh, G. K., R. K. Chaudhary, and K. V. Shrivastava, "A compact zeroth order resonating antenna using complementary split ring resonator with mushroom type of structure," Progress In Electromagnetics Research Letters, Vol. 28, 139-148, 2012.
doi:10.2528/PIERL11110709

13. Mart?nez, F. J. H., G. Zamora, F. Paredes, F. Mart?n, and J. Bonache, "Multiband printed monopole antennas loaded with OCSRRs for PANs and WLANs," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1528-1531, 2011.
doi:10.1109/LAWP.2011.2181309

14. Sharma, S. K., A. Gupta, and R. K. Chaudhary, "Compact CPW-fed CHSSR antenna for WLAN," IEEE International Microwave and RF Conference (IMaRC), 115-117, Bangalore, 2014.

15. Baena, J. D., J. Bonache, J. F. Martin, et al. "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1451-1461, 2005.
doi:10.1109/TMTT.2005.845211

16. Si, L.-M. and X. Lv, "CPW-fed multi-band omni-directional planar microstrip antenna using composite metamaterial resonators for wireless communications," Progress In Electromagnetics Research, Vol. 83, 133-146, 2008.
doi:10.2528/PIER08050404

17. Lai, A., K. M. K. H. Leong, and T. Itoh, "Infinite wavelength resonant antennas with monopolar radiation pattern based on periodic structures," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, 868-876, 2007.
doi:10.1109/TAP.2007.891845

18. Majedi, M. S. and A. R. Attari, "A compact broadband metamaterial-inspired antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 345-348, 2013.
doi:10.1109/LAWP.2013.2248072