Vol. 47
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-03-31
Calculation of the Image of Extended Objects Placed Behind Metamaterial Slabs
By
Progress In Electromagnetics Research M, Vol. 47, 111-120, 2016
Abstract
The image produced by metamaterial slabs is discussed in a number of papers in terms of the electromagnetic field distribution. In this paper a procedure is proposed to efficiently calculate the image of an extended object placed behind a metamaterial slab as it will be seen by an observer - which can greatly differ from the image formed by the intensity maxima. The first step of the procedure retrieves the dispersion relation of a periodic metamaterial slab from the S parameters calculated with full wave electromagnetic simulation of the unit cell. The second step of the procedure utilizes the retrieved dispersion relation in the transfer matrix method to calculate the image of a point source placed behind the metamaterial slab as a function of the observation angle. Knowing the image distance of the point source for all observation angles, the image of an extended object can be efficiently calculated. The procedure is demonstrated with a Fishnet type metamaterial.
Citation
Arnold Kalvach Zsolt Szabo , "Calculation of the Image of Extended Objects Placed Behind Metamaterial Slabs," Progress In Electromagnetics Research M, Vol. 47, 111-120, 2016.
doi:10.2528/PIERM15121006
http://www.jpier.org/PIERM/pier.php?paper=15121006
References

1. Solymar, L. and E. Shamonina, Waves in Metamaterials, Oxford University Press, 2009.

2. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

3. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
doi:10.1126/science.1058847

4. Smith, D. R., J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science, Vol. 305, No. 5685, 788-792, 2004.
doi:10.1126/science.1096796

5. Shalaev, V. M., "Optical negative-index metamaterials," Nature Photonics, Vol. 1, 41-48, 2007.
doi:10.1038/nphoton.2006.49

6. Moitra, P., Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, "Realization of an all-dielectric zero-index optical metamaterial," Nature Photonics, Vol. 7, 791-795, 2013.
doi:10.1038/nphoton.2013.214

7. Choi, M., S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, "A terahertz metamaterial with unnaturally high refractive index," Nature, Vol. 470, No. 7334, 369-373, 2011.
doi:10.1038/nature09776

8. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 51, 1516-1529, 2003.
doi:10.1109/TAP.2003.813622

9. Shalaev, V. M., W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Optics Letters, Vol. 30, No. 24, 3356-3358, 2005.
doi:10.1364/OL.30.003356

10. Cai, W. and V. M. Shalaev, Optical Metamaterials, Springer, 2010.
doi:10.1007/978-1-4419-1151-3

11. Kildishev, A. V., A. Boltasseva, and V. M. Shalaev, "Planar photonics with metasurfaces," Science, Vol. 339, 1232009, 2013.
doi:10.1126/science.1232009

12. Fang, N. and X. Zhang, "Imaging properties of a metamaterial superlens," Applied Physics Letters, Vol. 82, 161-163, 2003.
doi:10.1063/1.1536712

13. Belov, P. and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime," Physical Review B - Condensed Matter and Materials Physics, Vol. 73, No. 11, 113110, 2006.
doi:10.1103/PhysRevB.73.113110

14. Hegde, R. S., Z. Szabó, Y. L. Hor, Y. Kiasat, E. P. Li, and W. J. R. Hoefer, "The dynamics of nanoscale superresolution imaging with the superlens," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, 2612-2623, 2011.
doi:10.1109/TMTT.2011.2160084

15. Lu, D. and Z. Liu, "Hyperlenses and metalenses for far-field super-resolution imaging," Nature Communications, Vol. 3, 1205, 2012.

16. Szabó, Z., Y. Kiasat, and E. P. Li, "Subwavelength imaging with composite metamaterials," Journal of the Optical Society of America B - Optical Physics, Vol. 31, No. 6, 1298-1307, 2014.
doi:10.1364/JOSAB.31.001298

17. Aieta, F., P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gahurro, F. Capasso, Z. Gaburro, and F. Capasso, "Aberration-free ultrathin at lenses and axicons at telecom wavelengths based on plasmonic metasurfaces," Nano Letters, Vol. 12, No. 9, 4932-4936, 2012.
doi:10.1021/nl302516v

18. Aieta, F., P. Genevet, M. Kats, and F. Capasso, "Aberrations of at lenses and aplanatic metasurfaces," Optics Express, Vol. 21, 31530-31539, 2013.
doi:10.1364/OE.21.031530

19. Luo, C., S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Physical Review B, Vol. 65, No. 20, 201104, 2002.
doi:10.1103/PhysRevB.65.201104

20. Lu, W. T. and S. Sridhar, "Flat lens without optical axis: Theory of imaging," Optics Express, Vol. 13, No. 26, 10673-10680, 2005.
doi:10.1364/OPEX.13.010673

21. Fan, X., G. P. Wang, J. C. W. Lee, and C. T. Chan, "All-angle broadband negative refraction of metal waveguide arrays in the visible range: Theoretical analysis and numerical demonstration," Physical Review Letters, Vol. 97, No. 7, 1-4, 2006.
doi:10.1103/PhysRevLett.97.073901

22. Lu, W. T. and S. Sridhar, "Superlens imaging theory for anisotropic nanostructured metamaterials with broadband all-angle negative refraction," Physical Review B - Condensed Matter and Materials Physics, Vol. 77, No. 23, 1-4, 2008.

23. Yao, J., K.-T. Tsai, Y. Wang, Z. Liu, G. Bartal, Y.-L. Wang, and X. Zhang, "Imaging visible light using anisotropic metamaterial slab lens," Optics Express, Vol. 17, 22380-22385, 2009.
doi:10.1364/OE.17.022380

24. Silin, R., "On the history of backward electromagnetic waves in metamaterials," Metamaterials, Vol. 6, No. 1-2, 1-7, 2012.
doi:10.1016/j.metmat.2012.09.004

25. Menzel, C., C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, "Retrieving effective parameters for metamaterials at oblique incidence," Physical Review B, Vol. 77, 195328, 2008.
doi:10.1103/PhysRevB.77.195328

26. Paul, T., C. Rockstuhl, C. Menzel, and F. Lederer, "Anomalous refraction, diffraction, and imaging in metamaterials," Physical Review B, Vol. 79, No. 11, 115430, 2009.
doi:10.1103/PhysRevB.79.115430

27. Szabó, Z., G.-H. H. Park, R. Hedge, and E. P. Li, "A unique extraction of metamaterial parameters based on Kramers-Kronig relationship," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 10, 2646-2653, 2010.
doi:10.1109/TMTT.2010.2065310

28. Szabó, Z. and J. Füzi, "Equivalence of magnetic metamaterials and composites in the view of effective medium theories," IEEE Transactions on Magnetics, Vol. 50, No. 4, 1-4, 2014.
doi:10.1109/TMAG.2013.2288297

29. Chen, X. D., T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E, Vol. 70, No. 1, 016608, 2004.
doi:10.1103/PhysRevE.70.016608

30. Brillouin, L., Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices, Courier Corporation, 2003.

31. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, John Wiley & Sons, 2008.

32. Dolling, G., C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Optics Letters, Vol. 31, 1800-1802, 2006.
doi:10.1364/OL.31.001800

33. Taflove, A. and S. C. Hagness, Computational Electrodynamics, Artech House Publishers, 2000.

34. Born, M. and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, CUP Archive, 2000.