1. Steer, M. B., J. W. Bandler, and C. M. Snowden, "Computer-aided design of RF and microwave circuits and systems," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 3, 996-1005, March 2002.
doi:10.1109/22.989983 Google Scholar
2. Azaro, R., A. Massa, M. Donelli, et al. "Unsupervised synthesis of microwave components by means of an evolutionary-based tool exploiting distributed computing resources," Electromagnetic Waves, Vol. 56, 93-108, 2006, DOI: 10.2528/PIER05010901. Google Scholar
3. Rukanuzzaman, M. D., M. Donelli, and C. Saavedra, "A methodology for the design of microwave systems and circuits using an evolutionary algorithm," Progress In Electromagnetics Research M, Vol. 31, 129-141, 2013. Google Scholar
4. Doneli, M., C. Saavedra, and M. Rukanuzzaman, "Design and optimization of a broadband xband bidirectional amplifier," IEEE Microwave and Wireless Components Letters, Vol. 55, No. 7, 1730-1735, 2013. Google Scholar
5. Kwak, M., D. F. Kimball, C. D. Presti, et al. "Design of a wideband high-voltage high-efficiency BiCMOS envelop amplifier for micro-base-station RF power amplifiers," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 6, 1850-1861, 2012.
doi:10.1109/TMTT.2012.2184128 Google Scholar
6. Rieh, J.-S., B. Jagannathan, D. R. Greenberg, et al. "SiGe heterojunction bipolar transistor and circuits towards terahertz communication apllications," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 10, 2390-2408, 2004.
doi:10.1109/TMTT.2004.835984 Google Scholar
7. Kerherve, E., N. Demirel, et al. "A broad and 4.5–15.5-GHz SiGe power amplifier with 25.5-dBm peak saturated output power and 28.7% maximum PAE," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 5, 1621-1632, 2015.
doi:10.1109/TMTT.2015.2415490 Google Scholar
8. Li, Y., J. Lopez, et al. "Circuits and system design of RF polar transmitters using envelope-tracking and SiGe power amplifiers for mobile WiMAX," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 58, No. 5, 893-901, 2011.
doi:10.1109/TCSI.2010.2089562 Google Scholar
9. Jung, J., G. Lee, et al. "A SiGe HBT power amplifier with integrated mode control switches for LTE applications," 2013 IEEE 13th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), 138-140, 2013.
doi:10.1109/SiRF.2013.6489458 Google Scholar
10. Yoshimasu, T., M. Akagi, et al. "An HBT MMIC power amplifier with an integrated diode linearizer for low-voltage portable phone applications," IEEE J. Solid State Circuits, Vol. 33, No. 9, 1290-1296, 1998.
doi:10.1109/4.711326 Google Scholar
11. Noh, Y. S. and C. S. Park, "PCS/W-CDMA dual band MMIC power amplifier with a newly proposed linearizing bias circuit," IEEE J. Solid-State Circuits, Vol. 37, No. 9, 1096-1099, 2002. Google Scholar
12. Fujita, K., K. Shirakawa, et al. "A 5GHz high efficiency and low distortion InGaP/GaAs HBT power amplifier MMIC," IEEE MTT-S Microwave Symp. Dig., 871-874, 2003. Google Scholar
13. Kim, J. H., J. H. Kim, et al. "High linear HBT MMIC power amplifier with partial RF coupling to bias circuit for W-CDMA portable application," Proceeding of 3rd International Conference on Microwave and Millimeter Wave Technology, 809-812, 2002.
doi:10.1109/ICMMT.2002.1187824 Google Scholar
14. Kim, J. H., J. H. Kim, et al. "Linearised HBT MMIC power amplifier with partially RF coupled active bias circuit for W-CDMA portable terminals applications," Electronics Letters, Vol. 39, No. 10, 781-783, 2003.
doi:10.1049/el:20030506 Google Scholar
15. Kim, J. H., J. H. Kim, et al. "A low quiescent current 3.3V operation linear MMIC power amplifier for 5 GHz WLAN applications," IEEE MTT-S Microwave Symp. Dig., 867-870, 2003. Google Scholar
16. Hua, W.-C., H.-H. Lai, et al. "High-linearity and temperature-insensitive 2.4GHz SiGe power amplifier with dynamic-bias control," IEEE Radio Frequency Integrated Circuit Symposium, 609-612, 2005. Google Scholar
17. Zhang, S., J. Su, L. Chen, et al. "A fully integrated, highly linear SiGe BiCMOS class-AB power amplifier targeting 2.4 GHz applications," Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia), 275-278, 2010. Google Scholar
18. Huang, C.-C. and W.-C. Lin, "A compact high-efficiency CMOS power amplifier with built-in linearizer," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 9, 587-589, 2009.
doi:10.1109/LMWC.2009.2027093 Google Scholar
19. Eiji, T., T. Ikushima, K. Itoh, et al. "A dual bias-feed circuit design for SiGe HBT low-noise linear amplifier," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 2, 414-421, 2003.
doi:10.1109/TMTT.2002.807835 Google Scholar
20. Li, Y., J. Lopez, D. Y. C. Lie, et al. "A broadband SiGe power amplifier in an efficient polar transmitter using envelope-tracking for mobile WiMAX," 2011 IEEE 11th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 137-140, 2011. Google Scholar
21. Liao, H.-H., H. Jiang, P. Shanjani, et al. "A fully integrated 2 × 2 power amplifier for dual band MIMO 802.11n WLAN application using SiGe HBT technology," IEEE Journal of Solid-State Circuits, Vol. 44, No. 5, 1361-1371, 2009.
doi:10.1109/JSSC.2009.2015817 Google Scholar
22. Wang, F., D. F. Kimball, D. Y. Lie, et al. "A monolithic high-efficiency 2.4-GHz 20-dBm SiGe BiCMOS envelope-tracking OFDM power amplifier," IEEE Journal of Solid-State Circuits, Vol. 42, No. 6, 1271-1279, 2007.
doi:10.1109/JSSC.2007.897170 Google Scholar