Vol. 64
Latest Volume
All Volumes
PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-05-31
Design of 900 MHz SiGe Power Amplifier with Linearization Bias Circuit
By
Progress In Electromagnetics Research C, Vol. 64, 141-150, 2016
Abstract
A single stage 900 MHz power amplifier (PA) with linearization bias circuit is designed with HHNEC 0.5 μm BIS500G power SiGe BiCMOS process. It is implemented by single-ended common emitter structure as a class AB power amplifier. The adopted active bias circuit is originally explained by using two virtue current sources, so that the mechanism of the improvement of linearity can be described more clearly. Then the mechanism is applied to guide the design of a power amplifier with an active bias circuit, which shows better linearity than resistor biased power amplifier by simulation. Through further design and measurement, the fabricated single stage power amplifier exhibits output power 1 dB compression point (OP1 dB) of 18.9 dBm, with power added efficiency (PAE) of 26.75% and power gain of 20.9 dB under 3.3 V voltage supply.
Citation
Guiheng Zhang, Wei Zhang, Jun Fu, and Yudong Wang, "Design of 900 MHz SiGe Power Amplifier with Linearization Bias Circuit," Progress In Electromagnetics Research C, Vol. 64, 141-150, 2016.
doi:10.2528/PIERC16022903
References

1. Steer, M. B., J. W. Bandler, and C. M. Snowden, "Computer-aided design of RF and microwave circuits and systems," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 3, 996-1005, March 2002.
doi:10.1109/22.989983

2. Azaro, R., A. Massa, M. Donelli, et al. "Unsupervised synthesis of microwave components by means of an evolutionary-based tool exploiting distributed computing resources," Electromagnetic Waves, Vol. 56, 93-108, 2006, DOI: 10.2528/PIER05010901.

3. Rukanuzzaman, M. D., M. Donelli, and C. Saavedra, "A methodology for the design of microwave systems and circuits using an evolutionary algorithm," Progress In Electromagnetics Research M, Vol. 31, 129-141, 2013.

4. Doneli, M., C. Saavedra, and M. Rukanuzzaman, "Design and optimization of a broadband xband bidirectional amplifier," IEEE Microwave and Wireless Components Letters, Vol. 55, No. 7, 1730-1735, 2013.

5. Kwak, M., D. F. Kimball, C. D. Presti, et al. "Design of a wideband high-voltage high-efficiency BiCMOS envelop amplifier for micro-base-station RF power amplifiers," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 6, 1850-1861, 2012.
doi:10.1109/TMTT.2012.2184128

6. Rieh, J.-S., B. Jagannathan, D. R. Greenberg, et al. "SiGe heterojunction bipolar transistor and circuits towards terahertz communication apllications," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 10, 2390-2408, 2004.
doi:10.1109/TMTT.2004.835984

7. Kerherve, E., N. Demirel, et al. "A broad and 4.5–15.5-GHz SiGe power amplifier with 25.5-dBm peak saturated output power and 28.7% maximum PAE," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 5, 1621-1632, 2015.
doi:10.1109/TMTT.2015.2415490

8. Li, Y., J. Lopez, et al. "Circuits and system design of RF polar transmitters using envelope-tracking and SiGe power amplifiers for mobile WiMAX," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 58, No. 5, 893-901, 2011.
doi:10.1109/TCSI.2010.2089562

9. Jung, J., G. Lee, et al. "A SiGe HBT power amplifier with integrated mode control switches for LTE applications," 2013 IEEE 13th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), 138-140, 2013.
doi:10.1109/SiRF.2013.6489458

10. Yoshimasu, T., M. Akagi, et al. "An HBT MMIC power amplifier with an integrated diode linearizer for low-voltage portable phone applications," IEEE J. Solid State Circuits, Vol. 33, No. 9, 1290-1296, 1998.
doi:10.1109/4.711326

11. Noh, Y. S. and C. S. Park, "PCS/W-CDMA dual band MMIC power amplifier with a newly proposed linearizing bias circuit," IEEE J. Solid-State Circuits, Vol. 37, No. 9, 1096-1099, 2002.

12. Fujita, K., K. Shirakawa, et al. "A 5GHz high efficiency and low distortion InGaP/GaAs HBT power amplifier MMIC," IEEE MTT-S Microwave Symp. Dig., 871-874, 2003.

13. Kim, J. H., J. H. Kim, et al. "High linear HBT MMIC power amplifier with partial RF coupling to bias circuit for W-CDMA portable application," Proceeding of 3rd International Conference on Microwave and Millimeter Wave Technology, 809-812, 2002.
doi:10.1109/ICMMT.2002.1187824

14. Kim, J. H., J. H. Kim, et al. "Linearised HBT MMIC power amplifier with partially RF coupled active bias circuit for W-CDMA portable terminals applications," Electronics Letters, Vol. 39, No. 10, 781-783, 2003.
doi:10.1049/el:20030506

15. Kim, J. H., J. H. Kim, et al. "A low quiescent current 3.3V operation linear MMIC power amplifier for 5 GHz WLAN applications," IEEE MTT-S Microwave Symp. Dig., 867-870, 2003.

16. Hua, W.-C., H.-H. Lai, et al. "High-linearity and temperature-insensitive 2.4GHz SiGe power amplifier with dynamic-bias control," IEEE Radio Frequency Integrated Circuit Symposium, 609-612, 2005.

17. Zhang, S., J. Su, L. Chen, et al. "A fully integrated, highly linear SiGe BiCMOS class-AB power amplifier targeting 2.4 GHz applications," Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia), 275-278, 2010.

18. Huang, C.-C. and W.-C. Lin, "A compact high-efficiency CMOS power amplifier with built-in linearizer," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 9, 587-589, 2009.
doi:10.1109/LMWC.2009.2027093

19. Eiji, T., T. Ikushima, K. Itoh, et al. "A dual bias-feed circuit design for SiGe HBT low-noise linear amplifier," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 2, 414-421, 2003.
doi:10.1109/TMTT.2002.807835

20. Li, Y., J. Lopez, D. Y. C. Lie, et al. "A broadband SiGe power amplifier in an efficient polar transmitter using envelope-tracking for mobile WiMAX," 2011 IEEE 11th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 137-140, 2011.

21. Liao, H.-H., H. Jiang, P. Shanjani, et al. "A fully integrated 2 × 2 power amplifier for dual band MIMO 802.11n WLAN application using SiGe HBT technology," IEEE Journal of Solid-State Circuits, Vol. 44, No. 5, 1361-1371, 2009.
doi:10.1109/JSSC.2009.2015817

22. Wang, F., D. F. Kimball, D. Y. Lie, et al. "A monolithic high-efficiency 2.4-GHz 20-dBm SiGe BiCMOS envelope-tracking OFDM power amplifier," IEEE Journal of Solid-State Circuits, Vol. 42, No. 6, 1271-1279, 2007.
doi:10.1109/JSSC.2007.897170