Vol. 48
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-04-16
A Method to Extract Dielectric Parameters from Transmission Lines with Conductor Surface Roughness at Microwave Frequencies
By
Progress In Electromagnetics Research M, Vol. 48, 1-8, 2016
Abstract
This paper details an effective method to extract dielectric parameters including dielectric constant Dk and loss tangent Df from transmission lines containing rough conductor surface. The concept of effective conductivity is firstly introduced to model conductor surface roughness in transmission lines. By using differential extrapolation method, propagation parameters of transmission lines can be extracted by removing the roughness effects. A curve-fitting method based on Genetic Algorithm (GA) is adopted to fit the propagation parameters in the smoothened case and to derive the dielectric parameters. The proposed method is especially accurate for parameter extraction at high frequency and is practical to all types of transmission lines.
Citation
Bin-Ke Huang Qi Jia , "A Method to Extract Dielectric Parameters from Transmission Lines with Conductor Surface Roughness at Microwave Frequencies," Progress In Electromagnetics Research M, Vol. 48, 1-8, 2016.
doi:10.2528/PIERM16030209
http://www.jpier.org/PIERM/pier.php?paper=16030209
References

1. Zhang, J., et al., "Reconstruction of dispersive dielectric properties for PCB substrates using a genetic algorithm," IEEE Transactions on Electromagnetic Compatibility, Vol. 50, No. 3, 704-714, 2008.
doi:10.1109/TEMC.2008.927923

2. Toda, A. P. and F. de Flaviis, "60-GHz substrate materials characterization using the covered transmission-line method," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 3, 1063-1075, 2015.
doi:10.1109/TMTT.2015.2394740

3. Narayanan, P. M., "Microstrip transmission line method for broadband permittivity measurement of dielectric substrates," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 11, 2784-2790, 2014.
doi:10.1109/TMTT.2014.2354595

4. Horn, III, A. F., J. W. Reynolds, and J. C. Rautio, "Conductor profile effects on the propagation constant of microstrip transmission lines," 2010 IEEE MTT-S International Microwave Symposium Digest (MTT), 868-871, 2010.
doi:10.1109/MWSYM.2010.5515933

5. Guo, X., et al., "An analysis of conductor surface roughness effects on signal propagation for stripline interconnects," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 3, 707-714, 2014.
doi:10.1109/TEMC.2013.2294958

6. Gold, G. and K. Helmreich, "A physical model for skin effect in rough surfaces," IEEE 42nd European Microwave Conference (EuMC), 1011-1014, 2012.

7. Koul, A., et al., "Differential extrapolation method for separating dielectric and rough conductor losses in printed circuit boards," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 2, 421-433, 2012.
doi:10.1109/TEMC.2010.2087341

8. Zhou, Z. and K. L. Melde, "A comprehensive technique to determine the broadband physically consistent material characteristics of microstrip lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 1, 185-194, 2010.
doi:10.1109/TMTT.2009.2036339

9. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 2009.

10. Quagliarella, D., Genetic Algorithms and Evolution Strategy in Engineering and Computer Science: Recent Advances and Industrial Applications, John Wiley & Sons Ltd, 1998.

11. Scaife, B. K. P., Principles of Dielectrics, OUP Oxford, 1998.

12. Böttcher, C. J. F., et al., Theory of Electric Polarization, Elsevier Scientific Pub. Co., 1978.

13. FR4 Data Sheet [EB/OL], , 2016-03-24, Available: http://www.farnell.com/datasheets/1644697.pdf.

14. Sapoval, B., C. Hermann, and C. Hermann, Physics of Semiconductors, Springer, New York, 2003.