1. Chigrin, D. N., et al. "Observation of total omnidirectional reflection from a one-dimensional dielectric lattice," Appl. Phys. A Mate. Sci. Process., Vol. 68, 25-28, 1999.
doi:10.1007/s003390050849 Google Scholar
2. John, S., et al. "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486 Google Scholar
3. John, S., et al. "Spontaneous emission near the edge of a photonic band gap," Phys. Rev. A, Vol. 50, No. 2, 1764-1769, 1994.
doi:10.1103/PhysRevA.50.1764 Google Scholar
4. Russell, P. S., "Full photonic bandgaps and spontaneous emission control in 1D multilayer dielectric structures," Opt. Commun., Vol. 160, 66-71, 1999.
doi:10.1016/S0030-4018(98)00659-2 Google Scholar
5. Kramper, P., et al. "Highly directional emission from photonic crystal waveguides of subwavelength width," Phys. Rev. Lett., Vol. 92, 113903–7, 2004. Google Scholar
6. Janot, C., Quasicrystals, Clarendon Press, Oxford, 1994.
7. Abdelaziz, K. B., J. Zaghdoudi, M. Kanzari, and B. Rezig, "A broad ominidirectional re?ection band obtain from deformed Fibonacii quasi-periodic one dimensional photonic crystals," J. Opt. A: Pure Appl. Opt., Vol. 7, 544-549, 2005.
doi:10.1088/1464-4258/7/10/005 Google Scholar
8. Hsueh, W. J., "Omnidirectional band gap in Fibonacci photonic crystals with metamaterials using a band-edge formalism," Phys. Rev. A, Vol. 78, 013836-013842, 2008.
doi:10.1103/PhysRevA.78.013836 Google Scholar
9. Tang, Z., et al. "One-way electromagnetic waveguide using multiferroic Fibonacci superlattices," Opt. Commun., Vol. 356, 21-24, 2015.
doi:10.1016/j.optcom.2015.07.040 Google Scholar
10. Lavrinenko, A. V., et al. "Propagation of classical waves in nonperiodic media: Scaling properties of an optical Cantor filter," Physical Review E — Statistical, Nonlinear, and Soft Matter Physics, Vol. 65, 036621-036628, 2002.
doi:10.1103/PhysRevE.65.036621 Google Scholar
11. Hattori, H. T., et al. "Cantor set fiber Bragg grating," Journal of the Optical Society of America A: Optics and Image Vision, Vol. 17, 1583-1589, 2000.
doi:10.1364/JOSAA.17.001583 Google Scholar
12. Bednorz, J. G., "Possible high Tc superconductivity in the Ba-La-Cu-O system," Z. Physik, Vol. 64, 189-195, 1986.
doi:10.1007/BF01303701 Google Scholar
13. Takeda, H., et al. "Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide high-temperature superconductors," Phys. Rev. B, Vol. 67, 245109-245115, 2003.
doi:10.1103/PhysRevB.67.245109 Google Scholar
14. Feng, L., et al. "Tunable negative refractions in two-dimensional photonic crystals with superconductor constituents," J. Appl. Phys., Vol. 97, 073104-073110, 2005.
doi:10.1063/1.1866473 Google Scholar
15. Pei, T., et al. "A temperature modulation photonic crystal Mach-Zehnder interferometer composed of copper oxide high-temperature superconductor," J. Appl. Phys., Vol. 101, 084502–5, 2007. Google Scholar
16. Diaz-Valencia, B. F., "Photonic band gaps of a two-dimensional square lattice composed by superconducting hollow rods," Physica C, Vol. 505, 74-79, 2014.
doi:10.1016/j.physc.2014.07.012 Google Scholar
17. Liu, H., et al. "Temperature-dependent random lasing from superconducting scattering gain media," Optik, Vol. 126, 5579-5582, 2015.
doi:10.1016/j.ijleo.2015.09.080 Google Scholar
18. Tinkham, M., Introduction to Superconductivity, McGraw-Hill, New York, 1996.