Vol. 65
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-07-08
Generation, Application and Analysis of a Novel Family of m-Segment Quadratic Fractal Curves to Antennas
By
Progress In Electromagnetics Research C, Vol. 65, 191-200, 2016
Abstract
A novel family of fractal curves is proposed which provides the designer a systematic way of miniaturizing the microwave components with the freedom of choosing among form factor, design complexity and achieved miniaturization. The proposed fractal curve is characterized by two integer values m and n. The m value determines the form factor of the fractal while n value governs the iteration number. The equations governing the geometry of fractals are also presented. The proposed fractal is characterized for miniaturization by designing a printed monopole antenna for various values of m and n. The results from the full wave simulations and experiments are analysed and explained. The effect of fractal on reducing the resonant frequency is quantified by an equation based on its physical interpretation. Based on this analysis, saturation point for miniaturization is established. The curves being symmetric around a straight line, distortionless radiation patterns are seen.
Citation
Rajas Prakash Khokle, "Generation, Application and Analysis of a Novel Family of m-Segment Quadratic Fractal Curves to Antennas," Progress In Electromagnetics Research C, Vol. 65, 191-200, 2016.
doi:10.2528/PIERC16042001
References

1. Baliarda, C. P., J. Romeu, and A. Cardama, "The Koch monopole: A small fractal antenna," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 11, 1773-1781, 2000.
doi:10.1109/8.900236        Google Scholar

2. Werner, D. H. and S. Ganguly, "An overview of fractal antenna engineering research," IEEE Antennas and Propagation Magazine, Vol. 45, No. 1, 38-57, 2003.
doi:10.1109/MAP.2003.1189650        Google Scholar

3. Best, S. R., "A discussion on the significance of geometry in determining the resonant behavior of fractal and other non-Euclidean wire antennas," IEEE Antennas and Propagation Magazine, Vol. 45, No. 3, 9-28, 2003.
doi:10.1109/MAP.2003.1232160        Google Scholar

4. Chen, W. and G. Wang, "Effective design of novel compact fractal-shaped microstrip coupledline bandpass filters for suppression of the second harmonic," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 2, 74-76, 2009.
doi:10.1109/LMWC.2008.2011311        Google Scholar

5. Sharma, S., R. Kumar, R. V. S. Ram Krishna, and R. Khokle, "Design of defected ground bandpass filters using stepped impedance resonators," Progress In Electromagnetics Research B, Vol. 54, 203-225, 2013.
doi:10.2528/PIERB13070911        Google Scholar

6. Volakis, J. L., C. Chen, and K. Fujimoto, Small Antennas: Miniaturization Techniques and Applications, McGraw Hill Publications, 2010.

7. Gianvittorio, J. P. and Y. Rahmat-Samii, "Fractal antennas: A novel antenna miniaturization technique, and applications," IEEE Antennas and Propagation Magazine, Vol. 44, No. 1, 20-36, 2002.
doi:10.1109/74.997888        Google Scholar

8. Werner, D. H., R. L. Haupt, and P. L.Werner, "Fractal antenna engineering: The theory and design of fractal antenna arrays," IEEE Antennas and Propagation Magazine, Vol. 41, No. 5, 37-59, 1999.
doi:10.1109/74.801513        Google Scholar

9. Mahatthanajatuphat, C., S. Saleekaw, P. Akkaraekthalin, and M. Krairiksh, "A rhombic patch monopole antenna with modified Minkowski fractal geometry for UMTS, WLAN, and mobile WiMAX application," Progress In Electromagnetics Research, Vol. 89, 57-74, 2009.
doi:10.2528/PIER08111907        Google Scholar

10. Khan, O. M., Z. U. Islam, I. Rashid, F. A. Bhatti, and Q. U. Islam, "Novel miniaturized Koch pentagonal fractal antenna for multiband wireless applications," Progress In Electromagnetics Research, Vol. 141, 693-710, 2013.
doi:10.2528/PIER13060904        Google Scholar

11. Mahatthanajatuphat, C., P. Akkaraekthalin, S. Saleekaw, and M. Krairiksh, "A bidirectional multiband antenna with modified fractal slot fed by CPW," Progress In Electromagnetics Research, Vol. 95, 59-72, 2009.
doi:10.2528/PIER09061603        Google Scholar

12. Li, D. and J.-F. Mao, "Multiband multimode arched bow-shaped fractal helix antenna," Progress In Electromagnetics Research, Vol. 141, 47-78, 2013.
doi:10.2528/PIER13050903        Google Scholar

13. Li, D. and J.-F. Mao, "Sierpinskized Koch-like sided multifractal dipole antenna," Progress In Electromagnetics Research, Vol. 130, 207-224, 2012.
doi:10.2528/PIER12060108        Google Scholar

14. Farswan, A., A. K. Gautam, B. K. Kanaujia, and K. Rambabu, "Design of Koch fractal circularly polarized antenna for handheld UHF RFID reader applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 2, 771-775, 2016.
doi:10.1109/TAP.2015.2505001        Google Scholar

15. Dhar, S., K. Patra, R. Ghatak, B. Gupta, and D. R. Poddar, "A dielectric resonator-loaded Minkowski fractal-shaped slot loop heptaband antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1521-1529, 2015.
doi:10.1109/TAP.2015.2393869        Google Scholar

16. Jalil, M. E. B., M. K. Abd Rahim, N. A. Samsuri, N. A. Murad, H. A. Majid, K. Kamardin, and M. Azfar Abdullah, "Fractal Koch multiband textile antenna performance with bending, wet conditions and on human body," Progress In Electromagnetics Research, Vol. 140, 633-652, 2013.
doi:10.2528/PIER13041212        Google Scholar

17. Azaro, R., F. D. Natale, M. Donelli, E. Zeni, and A. Massa, "Synthesis of a prefractal dualband monopolar antenna for GPS applications," IEEE Antennas and Wireless Propagation Letters, Vol. 5, No. 1, 361-364, 2006.
doi:10.1109/LAWP.2006.880695        Google Scholar

18. Azaro, R., G. Boato, M. Donelli, A. Massa, and E. Zeni, "Design of a prefractal monopolar antenna for 3.4–3.6GHz Wi-Max band portable devices," IEEE Antennas and Wireless Propagation Letters, Vol. 5, No. 1, 116-119, 2006.
doi:10.1109/LAWP.2006.872427        Google Scholar

19. Ghatak, R., D. R. Poddar, and R. K. Mishra, "Design of Sierpinski gasket fractal microstrip antenna using real coded genetic algorithm," IET Microwaves, Antennas and Propagation, Vol. 3, No. 7, 1133-1140, 2009.
doi:10.1049/iet-map.2008.0257        Google Scholar

20. Donelli, M. and P. Febvre, "Design of a superconducting antenna integrated with a diplexer for radio-astronomy applications," Journal of Telecommunications and Information Technology, Vol. 3, 113-118, 2014.        Google Scholar

21. Ma, Y., H.-W. Zhang, Y. Li, Y. Wang, and W. Lai, "Terahertz sensing application by using fractal geometries of split-ring resonators," Progress In Electromagnetics Research, Vol. 138, 407-419, 2013.
doi:10.2528/PIER13010702        Google Scholar

22. Miyamoto, Y., H. Kanaoka, and H. Kirihara, "Terahertz wave localization at a three-dimensional ceramic fractal cavity in photonic crystals," Journal of Applied Physics, Vol. 103, 103106, 2008.
doi:10.1063/1.2924327        Google Scholar

23. Sangawa, U., "The origin of electromagnetic resonance in three-dimensional photonic fractals," Progress In Electromagnetics Research, Vol. 94, 153-173, 2009.
doi:10.2528/PIER09062203        Google Scholar

24. De la Mata Luque, T. M., N. R. K. Devarapalli, and C. G. Christodoulou, "Investigation of bandwidth enhancement in volumetric left-handed metamaterials using fractals," Progress In Electromagnetics Research, Vol. 131, 185-194, 2012.
doi:10.2528/PIER12071602        Google Scholar

25. Sengupta, K. and K. J. Vinoy, "A new measure of lacunarity for generalized fractals and its impact in the electromagnetic behaviour of Koch dipole antennas," Fractals, Vol. 14, No. 4, 271-282, 2006.
doi:10.1142/S0218348X06003313        Google Scholar

26. Comisso, M., "On the use of dimension and lacunarity for comparing the resonant behavior of convoluted wire antennas," Progress In Electromagnetics Research, Vol. 96, 361-376, 2009.
doi:10.2528/PIER09082505        Google Scholar