1. Basar, M. R., M. Y. Ahmad, J. Cho, and F. Ibrahim, "Application of wireless power transmission systems in wireless capsule endoscopy: An overview," Sensors, Vol. 14, No. 6, 10929-10951, Jun. 2014.
doi:10.3390/s140610929 Google Scholar
2. Singeap, A., C. Stanciu, and A. Trifan, "Capsule endoscopy: The road ahead," World Journal of Gastroenterology, Vol. 22, No. 1, 369-378, Jan. 2016.
doi:10.3748/wjg.v22.i1.369 Google Scholar
3. Rao, S. and J. C. Chiao, "Body electric: Wireless power transfer for implant applications," IEEE Microwave Magazine, Vol. 16, No. 2, 54-64, Mar. 2015.
doi:10.1109/MMM.2014.2377586 Google Scholar
4. Na, K., H. Jang, H. Ma, and F. Bien, "Tracking optimal efficiency of magnetic resonance wireless power transfer system for biomedical capsule endoscopy," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 1, 295-303, Jan. 2015.
doi:10.1109/TMTT.2014.2365475 Google Scholar
5. Kumagai, T., K. Saito, M. Takahashi, and K. Ito, "Design of receiving antenna for microwave power transmission to capsular endoscope," Proc. 2011 IMWS-IWPT, 145-148, 2011. Google Scholar
6. Kumagai, T., K. Saito, M. Takahashi, and K. Ito, "An introduction to HFSS: Fundamental principles, concepts and use," Ansoft LCC, Pittsburgh, PA, 2009. Google Scholar
7. Dong, D. H., W. Y. Liu, H. B. Feng, Y. L. Fu, and S. Huang, "Study of individual characteristic abdominal wall thickness based on magnetic anchored surgical instruments," Chinese Medical Journal, Vol. 128, No. 15, 2040-2044, Aug. 2015.
doi:10.4103/0366-6999.161360 Google Scholar
8. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Physics in Medicine and Biology, Vol. 41, No. 11, 2271-2293, Apr. 1996.
doi:10.1088/0031-9155/41/11/003 Google Scholar
9., Zygote body, https://zygotebody.com/.
10. Poon, A. S. Y., S. O’Driscoll, and T. H. Meng, "Optimal frequency for wireless power transmission into dispersive tissue," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 5, 1739-1750, May 2010.
doi:10.1109/TAP.2010.2044310 Google Scholar
11. Farid, J., M. Jeetkumar, Y. Q. Yu, and Z. Z. Chen, "Design of wireless power transfer systems using magnetic resonance coupling for implantable medical devices," Progress In Electromagnetics Research Letters, Vol. 40, 141-151, 2013. Google Scholar
12. Farid, J., M. Jeetkumar, Y. Q. Yu, and Z. Z. Chen, , Federal Communication Commission Office Engineering and Technology Supplement C (Ed. 01-01) to OET Bulletin 65 (ED. 97-01), Evaluating Compliance with FCC Guideline for Human Exposure to Radiofrequency Electromagnetic Fields, Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions, Washington, DC, Jun. 2001.
13. Shapiro, A. H., "Shape and Flow," Heinemann Educational Publishers, Dec. 31, 1986. Google Scholar
14. Schmidt, S., "Method for controlling the movement of an endoscopic capsule,", WO2009/127506, Oct. 22, 2009. Google Scholar
15. Carpi, F., N. Kastelein, M. Talcott, and C. Pappone, "Magnetically controllable gastrointestinal steering of video capsules," IEEE Transactions on Bio-medical Engineering, Vol. 58, No. 2, 231-234, Feb. 2011.
doi:10.1109/TBME.2010.2087332 Google Scholar
16. Pham, D. M. and S. M. Aziz, "A real-time localization system for an endoscopic capsule using magnetic sensors," Sensors, Vol. 14, No. 11, 20910-20928, 2014.
doi:10.3390/s141120910 Google Scholar
17. Pham, D. M. and S. M. Aziz, "ICNIRP guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)," Health Physics, Vol. 74, No. 4, 494-522, Oct. 1998. Google Scholar
18. Jia, Z., G. Yan, P. Jiang, Z. Wang, and H. Liu, "Efficiency optimization of wireless power transmission systems for active capsule endoscopes," Physiological Measurement, Vol. 32, 1561-1573, Aug. 2011. Google Scholar