Vol. 66
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-07-12
Conformal Hyperthermia of Superficial Tumor with Cylindrical Left-Handed Metamaterial Lens Applicator
By
Progress In Electromagnetics Research C, Vol. 66, 1-10, 2016
Abstract
In earlier time, we proposed a flat LHM-based hyperthermia scheme for conformal hyperthermia of a large superficial tumor. It is demonstrated that in this scheme by de-ploying multiple microwave sources in a specific array to shape the heating zone and properly setting the source-to-lens distance or phases of sources to adjust the inclination of heating zone, a heating zone better fit to large superficial tumor can be generated. In this paper, we propose a new hyperthermia scheme based on a cylindrical LHM lens which would be more maneuverable for tumors located in tissues with curved surface. It is shown that the same way adopted in the flat LHM-based scheme can be used in this new scheme to acquire desired heating zone for better fitting to tumor region. And larger critical source intervals defined in this new applicator greatly relax the restriction to the size of practical antennas applied in this scheme.
Citation
Yonghui Tao, and Gang Wang, "Conformal Hyperthermia of Superficial Tumor with Cylindrical Left-Handed Metamaterial Lens Applicator," Progress In Electromagnetics Research C, Vol. 66, 1-10, 2016.
doi:10.2528/PIERC16050303
References

1. Wust, P., B. Hildebrandt, Y. Sreenivasa, B. Rau, J. Gellermann, H. Riess, R. Felix, and P. Schlag, "Hyperthermia in combined treatment of cancer," Lancet Oncol., Vol. 3, 487-497, 2002.
doi:10.1016/S1470-2045(02)00818-5

2. Nielsen, O., M. Horsman, and J. Overgaard, "A future for hyperthermia in cancer treatment," Eur. J. Cancer, Vol. 37, 1587-1589, 2001.
doi:10.1016/S0959-8049(01)00193-9

3. Prior, M. V., M. L. D. Lumori, J. W. Hand, G. Lamaitre, C. J. Schneider, and J. D. P. van Dijk, "The use of a current sheet applicator array for superficial hyperthermia: Incoherent versus coherent operation," IEEE Trans. Biomed. Eng., Vol. 42, No. 7, 694-698, 1995.
doi:10.1109/10.391168

4. Kowalski, M., B. Behnia, A. Webb, and J. Jin, "Optimization of electromagnetic phased-arrays for hyperthermia via magnetic resonance temperature estimation," IEEE Trans. Biomed. Eng., Vol. 49, 1229-1241, 2002.
doi:10.1109/TBME.2002.804602

5. Wu, L., R. McGough, O. Arabe, and T. Samulski, "An RF phased array applicator designed for hyperthermia breast cancer treatments," Phys. Med. Biol., Vol. 51, 1-20, 2006.
doi:10.1088/0031-9155/51/1/001

6. Paulides, M., J. Bakker, A. Zwamborn, and G. Rhoon, "A head and neck hyperthermia applicator: Theoretical antenna array design," Int. J. Hyperthermia, Vol. 23, 59-67, 2007.
doi:10.1080/02656730601150522

7. Stauffer, P., P. Maccarini, K. Arunachalam, O. Craciunescu, C. Diederich, T. Juang, F. Rossetto, J. Schlorff, A. Milligan, J. Hsu, P. Sneed, and Z. Vujaskovic, "Conformal microwave array (CMA) applicators for hyperthermia of diffuse chestwall recurrence," Int. J. Hyperthermia, Vol. 26, 686-698, 2010.
doi:10.3109/02656736.2010.501511

8. Jones, E., J. Oleson, L. Prosnitz, T. Samulski, Z. Vujaskovic, D. Yu, L. Sanders, and M. Dewhirst, "Randomized trial of hyperthermia and radiation for superficial tumors," J. Clinical Oncol., Vol. 23, 3079-3085, 2005.
doi:10.1200/JCO.2005.05.520

9. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

10. Aydin, K., I. Bulu, and E. Ozbay, "Subwavelength resolution with a negative-index metamaterial superlens," Appl. Phys. Lett., Vol. 90, 254102, 2007.
doi:10.1063/1.2750393

11. Zhu, J. and G. Eleftheriades, "Experimental verification of overcoming the diffraction limit with a volumetric Veselago-Pendry transmission-line lens," Phy. Rev. Lett., Vol. 101, 13902, 2008.
doi:10.1103/PhysRevLett.101.013902

12. Iyer, A. K. and G. V. Eleftheriades, "Mechanisms of subdiffraction free-space imaging using a transmission-line metamaterial superlens: An experimental verification," Appl. Phys. Lett., Vol. 92, 131105, 2008.
doi:10.1063/1.2904635

13. Rudolph, S., C. Pfeiffer, and A. Grbic, "Design and free-space measurements of broadband, lowloss negative-permeability and negative-index media," IEEE Trans. Antennas Propagat., Vol. 59, 2989-2997, Aug. 2011.
doi:10.1109/TAP.2011.2158948

14. Wang, G. and Y. Gong, "Metamaterial lens applicator for microwave hyperthermia of breast cancer," Int. J. Hyperthermia, Vol. 25, 434-455, 2009.
doi:10.1080/02656730903061609

15. Gong, Y. and G. Wang, "Superficial tumor hyperthermia with flat left-handed metamaterial lens," Progress In Electromagnetics Research, Vol. 98, 389-405, 2009.
doi:10.2528/PIER09091401

16. Velazquez-Ahumada, M., M. Freire, and R. Marque, "Metamaterial focusing device for microwave hyperthermia," Microw. Opt. Tech. Lett., Vol. 53, 2868-2872, 2011.
doi:10.1002/mop.26434

17. Tao, Y. and G.Wang, "Conformal hyperthermia of superficial tumor with left-handed metamaterial lens applicator," IEEE Trans. Biomed. Eng., Vol. 59, No. 12, 3525-3530, 2012.
doi:10.1109/TBME.2012.2218108