Vol. 68
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-10-25
A Broadband Low Cross-Polarization U-Slot Patch Antenna Array Based on Differential Feed
By
Progress In Electromagnetics Research C, Vol. 68, 211-219, 2016
Abstract
In this paper, a single layer 4×4 U-slot patch antenna array based on differential feed was developed to achieve a wide bandwidth and low cross polarization with a simple feeding network. A U-slot was cut on a radiation patch to realize a wideband performance, and a microstrip-line fed structure was adopted to make the patch and feed network placed in a single layer. In order to reduce extra cross-polarization level in the H-plane caused by cutting U-slot, differential feed is adopted, which also makes it easily integrated with differential devices (such as differential amplifier) directly without baluns. A single layer U-slot patch array based on differential feed and an array having the same structure but based on normal feed were made and compared with each other. The designed differentially-fed patch array has more than 12% measured impedance bandwidth and stable gain at 18-19 dBi across the operating band from 5.2 to 5.88 GHz. The measured result shows that a better asymmetry of radiation pattern in the E-plane and a lower than -40 dB cross-polarization level in the H-plane can be achieved compared with normally-feed array.
Citation
Zhimin Zhu, Chunhong Chen, Yunjiao Chen, and Wen Wu, "A Broadband Low Cross-Polarization U-Slot Patch Antenna Array Based on Differential Feed," Progress In Electromagnetics Research C, Vol. 68, 211-219, 2016.
doi:10.2528/PIERC16052404
References

1. Lau, K. L., K. M. Luk, and K. F. Lee, "Wideband U-slot microstrip patch antenna array," Inst. Elect. Eng. Proc. --- Microw. Antennas Propag., Vol. 148, No. 1, 41-44, 2001.
doi:10.1049/ip-map:20010220        Google Scholar

2. Liu, S., W. Wu, and D.-G. Fang, "Single-feed dual-layer dual-band E-shaped and U-slot patch antenna for wireless communication application," IEEE Antennas and Wireless Propagation Letters, 2015.        Google Scholar

3. Weigand, S., G. H. Pan, and J. T. Bernhard, "Analysis and design of broad-band single-layer rectangular U-slot microstrip patch antennas," IEEE Trans. Antennas Propag., Vol. 51, No. 3, 457-468, Mar. 2003.
doi:10.1109/TAP.2003.809836        Google Scholar

4. Lau, K. L., K. M. Luk, and K. F. Lee, "Wideband U-slot microstrippatch antenna array," Inst. Elect. Eng. Proc. — Microw. Antenns Propag., Vol. 148, No. 1, 41-44, 2001.
doi:10.1049/ip-map:20010220        Google Scholar

5. Wang, H., X. B. Huang, and D. G. Fang, "A single layer wideband U-slot microstrip patch antenna array," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 9-12.        Google Scholar

6. Zhang, Y. P. and J. J. Wang, "Theory and analysis of differentiallydriven microstrip antennas," IEEE Trans. Antennas Propag., Vol. 54, No. 4, 1092-1099, 2006.
doi:10.1109/TAP.2006.872597        Google Scholar

7. Wong, W. and Y. P. Zhang, "0.18-mm CMOS push-pull power amplifier with antenna in IC package," IEEE Microwave Wireless Comp. Lett., Vol. 14, No. 1, 13-15, 2004.
doi:10.1109/LMWC.2003.821489        Google Scholar

8. Abele, P., E. Ojefors, K. B. Schad, E. Sonmez, A. Trasser, J. Konle, and H. Schumacher, "Wafer level integration of a 24GHz differential SiGe-MMIC oscillator with a patch antenna using BCB as a dielectric layer," Proc. 11th GAAS Symp., 419-422, Munich, Germany, 2003.        Google Scholar

9. Xue, Q., X. Y. Zhang, and C.-H. K. Chin, "A novel differential-fed patch antenna," Antennas and Wireless Propagation Letters, Vol. 5, 471-474, 2006.
doi:10.1109/LAWP.2006.885168        Google Scholar

10. Brauner, T., R. Vogt, and W. Bachtold, "A differential active patch antenna element for array applications," IEEE T. Microw. Wireless Comp. Lett., Vol. 13, No. 4, 161-163, 2003.
doi:10.1109/LMWC.2003.811045        Google Scholar

11. Wang, D., K. B. Ng, C. H. Chan, and H. Wong, "A novel wideband differentially-fed higher-order mode millimeter-wave patch antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 2, 466-473, Feb. 2015.
doi:10.1109/TAP.2014.2378263        Google Scholar

12. Jin, H. Y., C.-C. Chang, H.-J. Li, and Q. Xue, "Differential-fed patch antenna arrays with low cross polarization and wide bandwidths," Antennas and Wireless Propagation Letters, Vol. 13, 1069-1072, 2014.        Google Scholar

13. Lin, S. M., J. P. Wang, and G. Zhang, "A new compact ultra-wideband balun for printed balanced antennas," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 12, 1570-1579, 2015.
doi:10.1080/09205071.2015.1051191        Google Scholar