Vol. 50
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-10-05
Analysis of the Static and Dynamic Behavior of a Non Hysteretic Superconductive Passive Magnetic Linear Bearing by Using an Electromagnetic Integral Formulation
By
Progress In Electromagnetics Research M, Vol. 50, 183-193, 2016
Abstract
In this paper the analysis of the static and dynamic behavior of a non-hysteretic superconductive passive linear bearing is described. The high translational symmetry of the magnetic field seen by the superconductor assures a usable long stroke in the order of several tens of millimeters. The linear bearing in combination with an actuating system for only one degree of freedom can be used for accurate long-stroke precision positioning systems for cryogenic environments with zero hysteresis in the movement. The dynamics of the system is investigated using an integral formulation which transforms the solution of the field equations in the solution of an equivalent electric network. The knowledge of the currents in the equivalent network allows to evaluate all the electromagnetic quantities (fields, forces, eddy currents, ...) in the system. Finally, the coupling with the equation of the rigid body permits to simulate the electro/mechanical behavior of the system with six degree of freedom (6 DOF).
Citation
Efren Diez-Jimenez Antonino Musolino Rocco Rizzo Ernesto Tripodi , "Analysis of the Static and Dynamic Behavior of a Non Hysteretic Superconductive Passive Magnetic Linear Bearing by Using an Electromagnetic Integral Formulation," Progress In Electromagnetics Research M, Vol. 50, 183-193, 2016.
doi:10.2528/PIERM16062312
http://www.jpier.org/PIERM/pier.php?paper=16062312
References

1. ESA, "European non-dependence on critical space technologies: Actions for 2009,", Report, 2009.

2. Van Den Dool, T. C., F. Kamphues, W. L. M. Gielesen, and B. C. Braam, "Magnetic bearing based cryo-mechanisms for future IR missions," astro2010: The Astronomy and Astrophysics Decadal Survey, Vol. 2010, 33, 2009.

3. Iizuka, T. and H. Fujita, "Precise positioning of a micro conveyor based on superconducting magnetic levitation," Proc. of Int. Symp. on Micromechatronics and Human Science, 131-135, 1997.

4. Di Dio, V. and M. Montana, "State of art of tubular linear induction motor," Proc. of the Mediterranean Electrotechnical Conference - MELECON, Vol. 1, 285-288, 1996.
doi:10.1109/INTMAG.2015.7157307

5. Di Dio, V., G. Cipriani, M. Corpora, D. Curto, and M. Trapanese, "A Ferrite Tubular Linear Motor (FTLM): Analysis and design," 2015 IEEE Magnetics Conference (INTERMAG), 1-1, Beijing, 2015.

6. Di Dio, V., G. Cipriani, R. Miceli, and R. Rizzo, "Design criteria of tubular linear induction motors and generators: A prototype realization and its characterization," Leonardo Electronic Journal of Practices and Technologies, Vol. 12, No. 23, 19-40, Jul. 2013.
doi:10.1016/S0301-679X(02)00035-X

7. Theiler, G., T. Gradt, and P. Klein, "Friction and wear of PTFE composites at cryogenic temperatures," Tribol. Int., Vol. 35, 449-458, 2002.

8. Fleischer, N., M. Genut, L. Rapoport, and R. Tenne, "New nanotechnology solid lubricants for superior dry lubrication," Proceedings of the 10th European Space Mechanisms and Tribology Symposium, 65-66, 2003.

9. Choi, Y. M. and D. G. Gweon, "A high-precision dual-servo stage using Halbach linear active magnetic bearings," IEEE/ASME Trans. Mechatronics, No. 99, 1-7, 2011.
doi:10.1016/j.precisioneng.2005.09.005

10. Hol, S. A. J., E. Lomonova, and A. J. A. Vandenput, "Design of a magnetic gravity compensation system," Precis. Eng., Vol. 30, 265-273, 2006.
doi:10.1038/160330a0

11. Arkadiev, V., "A floating magnet," Nature, Vol. 160, No. 4062, 330-330, Sep. 1947.
doi:10.1088/0953-2048/13/2/201

12. Hull, J. R., "Superconducting bearings," Superc. Sci. Technol., Vol. 13, No. 2, 1-15, Jul. 2000.
doi:10.1109/TMECH.2013.2250988

13. Perez-Diaz, J. L., I. Valiente-Blanco, E. Diez-Jimenez, and J. Sanchez-Garcia-Casarrubios, "Superconducting non-contact device for precision positioning," IEEE/ASME Trans. on Mechatronics, Vol. 19, No. 2, 2014.

14. Diez-Jimenez, E. and J. L. Perez-Diaz, "Foundations of meissner superconductor magnet mechanisms engineering," Superconductivity - Theory and Applications, 153-172, 2011.
doi:10.1016/j.sna.2008.12.014

15. Iizuka, T., N. Sakai, and H. Fujita, "Position feedback control using magneto impedance sensors on conveyor with superconducting magnetic levitation," Sensors Actuators A Phys., Vol. 150, No. 1, 110-115, Mar. 2009.

16. Serrano-Tellez, J., F. Romera-Juarez, D. Gonzlez-de-Mara, M. Lamensans, H. Argelaguet-Vilaseca, J.-L. Prez-Daz, J. Snchez-Casarrubios, E. Diez-Jimenez, and I. Valiente-Blanco, "Experience on a cryogenic linear mechanism based on superconducting levitation," Conf. on Modern Technologies in Space and Ground-Based Telescopes and Instrumentation, 1-9, 2012.
doi:10.1016/j.mechmachtheory.2011.09.002

17. Prez-Daz, J., "Non-contact linear slider for cryogenic environment," Mach. Theory, Vol. 49, 308-314, 2012.

18. Diez-Jimenez, E., I. Valiente-Blanco, V. Castro-Fernandez, and J. L. Perez-Diaz, "Design and analysis of a non-hysteretic passive magnetic linear bearing for cryogenic environments," Proc. of the Inst. of Mech. Eng., Part J: Jour. of Eng. Tribology, Mar. 25, 2014.
doi:10.1109/TMAG.1985.1064185

19. Davat, B., Z. Ren, and M. Lajoie-Mazenc, "The movement in field modeling," IEEE Transactions on Magnetics, Vol. 21, No. 6, 2296-2298, Nov. 1985.

20. Bossavit, A., Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements, Academic Press, 1998.
doi:10.1109/20.106375

21. Rodger, D., H. C. Lai, and P. J. Leonard, "Coupled elements for problems involving movement," IEEE Transactions on Magnetics, Vol. 26, No. 2, 548-550, Mar. 1990.
doi:10.1049/ip-a-1.1988.0072

22. Albanese, R. and G. Rubinacci, "Integral formulation for 3D eddy-current computation using edge elements," IEEE Proceedings A (Physical Science, Measurement and Instrumentation, Management and Education, Reviews), Vol. 135, No. 7, 457-462, 1988.
doi:10.1002/jnm.1860

23. Musolino, A., R. Rizzo, E. Tripodi, and M. Toni, "Modeling of electromechanical devices by GPU-accelerated integral formulation," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 26, No. 4, 376-396, Jul./Aug. 2013.
doi:10.1109/20.497352

24. Esposito, N., A. Musolino, and M. Raugi, "Modelling of three-dimensional nonlinear eddy current problems with conductors in motion by an integral formulation," IEEE Transactions on Magnetics, Vol. 32, No. 3, 764-767, 1996.
doi:10.2528/PIER12091506

25. Musolino, A., R. Rizzo, and E. Tripodi, "Tubular linear induction machine as a fast actuator: Analysis and design criteria," Progress In Electromagnetics Research, Vol. 132, 603-619, 2012.
doi:10.1109/TPS.2013.2244916

26. Musolino, A., R. Rizzo, M. Toni, and E. Tripodi, "Acceleration of numerical formulations by using graphic processing units and its application in electromagnetic launcher modeling," IEEE Transactions on Plasma Science, Vol. 41, No. 5, 1104-1111, 2013.
doi:10.1002/nme.4974

27. Tripodi, E., A. Musolino, R. Rizzo, and M. Raugi, "A new predictor-corrector approach for the numerical integration of coupled electromechanical equations," International Journal for Numerical Methods in Engineering, Vol. 105, No. 4, 261-285, 2016.
doi:10.1109/TMAG.2004.839267

28. Barmada, S., A. Musolino, M. Raugi, and R. Rizzo, "Numerical simulation of a complete generator-rail launch system," IEEE Transactions on Magnetics, Vol. 41, 369-374, 2005.