1. Ansari, M. S., S. V. G. Ravindranath, M. S. Bhatia, B. Singh, and C. P. Navathe, "Electromagnetic coupling through apertures and shielding effectiveness of a metallic enclosure housing electro-optic pockels cell in a high power laser system," International Journal of Applied Electromagnetics and Mechanics, Vol. 42, No. 2, 191-199, 2013. Google Scholar
2. IEEE "Standard method for measuring the effectiveness of electromagnetic shielding enclosures," IEEE Std 299TM-2006 (R2012), 2012. Google Scholar
3. Robinson, M. P., T. M. Benson, C. Christopoulos, J. F. Dawson, M. Ganley, A. Marvin, S. Porter, and D. W. Thomas, "Analytical formulation for the shielding effectiveness of enclosures with apertures," IEEE Transactions on Electromagnetic Compatibility, Vol. 40, No. 3, 240-248, 1998.
doi:10.1109/15.709422 Google Scholar
4. Solin, J. R., "Formula for the field excited in a rectangular cavity with an aperture and lossy walls," IEEE Transactions on Electromagnetic Compatibility, Vol. 57, No. 2, 203-209, 2015.
doi:10.1109/TEMC.2014.2368124 Google Scholar
5. Nobakhti, M., P. Dehkhoda, and A. Tavakoli, "Improved modal method of moments technique to compensate the effect of wall dimension in shielding effectiveness evaluation," IET Science, Measurement & Technology, Vol. 8, No. 1, 17-22, 2014.
doi:10.1049/iet-smt.2012.0103 Google Scholar
6. Liu, E., P.-A. Du, and B. Nie, "An extended analytical formulation for fast prediction of shielding effectiveness of an enclosure at different observation points with an off-axis aperture," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 3, 589-598, 2014.
doi:10.1109/TEMC.2013.2289742 Google Scholar
7. Hao, C. and D. Li, "Simplified model of shielding effectiveness of a cavity with apertures on different sides," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 2, 335-342, 2014.
doi:10.1109/TEMC.2013.2280152 Google Scholar
8. Belkacem, F. T., M. Bensetti, A.-G. Boutar, D. Moussaoui, M. Djennah, and B. Mazari, "Combined model for shielding effectiveness estimation of a metallic enclosure with apertures," IET Science, Measurement & Technology, Vol. 5, No. 3, 88-95, 2011.
doi:10.1049/iet-smt.2010.0040 Google Scholar
9. Nie, B.-L. and P.-A. Du, "An efficient and reliable circuit model for the shielding effectiveness prediction of an enclosure with an aperture," IEEE Transactions on Electromagnetic Compatibility, Vol. 57, No. 3, 357-364, 2015.
doi:10.1109/TEMC.2014.2383438 Google Scholar
10. Wang, C.-C., C.-Q. Zhu, X. Zhou, and Z.-F. Gu, "Calculation and analysis of shielding effectiveness of the rectangular enclosure with apertures," Applied Computational Electromagnetics Society Journal, Vol. 28, No. 6, 535-545, 2013. Google Scholar
11. Karami, H., R. Moini, S. H. Sadeghi, H. Maftooli, M. Mattes, and J. R. Mosig, "Efficient analysis of shielding effectiveness of metallic rectangular enclosures using unconditionally stable time-domain integral equations," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 6, 1412-1419, 2014.
doi:10.1109/TEMC.2014.2315719 Google Scholar
12. Hussein, K. F., "Spatial filter housing for enhancement of the shielding effectiveness of perforated enclosures with lossy internal coating: Broadband characterization," International Journal of Antennas and Propagation, Vol. 2, No. 8, 2013. Google Scholar
13. Xiong, R., B. Chen, Z. Y. Cai, and Q. Chen, "A numerically efficient method for the FDTD analysis of the shielding effectiveness of large shielding enclosures with thin-slots," International Journal of Applied Electromagnetics and Mechanics, Vol. 40, No. 4, 251-258, 2012. Google Scholar
14. Azizi, H., F. TaharBelkacem, D. Moussaoui, H. Moulai, A. Bendaoud, and M. Bensetti, "Electromagnetic interference from shielding effectiveness of a rectangular enclosure with apertures– circuital approach, FDTD and FIT modeling," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 4, 494-514, 2014.
doi:10.1080/09205071.2013.875862 Google Scholar
15. Lei, J.-Z., C.-H. Liang, and Y. Zhang, "On shielding effectiveness of metallic cavities with apertures by combining parallel FDTD method with windowing technique," Progress In Electromagnetics Research, Vol. 74, 85-112, 2007.
doi:10.2528/PIER07041905 Google Scholar
16. Dehkhoda, P., A. Tavakoli, and R. Moini, "Fast calculation of the shielding effectiveness for a rectangular enclosure of finite wall thickness and with numerous small apertures," Progress In Electromagnetics Research, Vol. 86, 341-355, 2008.
doi:10.2528/PIER08100803 Google Scholar
17. Dehkhoda, P., A. Tavakoli, and M. Azadifar, "Shielding effectiveness of an enclosure with finite wall thickness and perforated opposing walls at oblique incidence and arbitrary polarization by GMMoM," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 4, 792-805, 2012.
doi:10.1109/TEMC.2012.2188855 Google Scholar
18. Basyigit, I. B., M. F. Caglar, and S. Helhel, "Magnetic shielding effectiveness and simulation analysis of metalic enclosures with apertures," Proceedings of the 9th International Conference on Electrical and Electronics Engineering (ELECO), 328-331, Bursa, Turkey, November 2015. Google Scholar
19. Basyigit, I. B., P. D. Tosun, S. Ozen, and S. Helhel, "An affect of the aperture length to aperture width ratio on broadband shielding effectiveness," Proceedings of the XXXth URSI General Assembly and Scientific Symposium, 1-4, Istanbul, Turkey, August–November 2011. Google Scholar
20., C. S. Technology, CST-EMC Studio, 2015, Available: www.cst.com. Google Scholar
21. Celozzi, S. and R. Araneo, "Alternative definitions for the time-domain shielding effectiveness of enclosures," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 2, 482-485, 2014.
doi:10.1109/TEMC.2013.2282713 Google Scholar
22. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, 2012.
23. Balanis, C. A., Antenna Theory Analysis and Design, Wiley, 2005.