1. Guo, J., Z. Xu, C. Qian, and W.-B. Dou, "Design of a microstrip balanced mixer for satellite communication," Progress In Electromagnetics Research, Vol. 115, 289-301, 2011.
doi:10.2528/PIER11022109 Google Scholar
2. Gruszczynski, S., K. Wincza, and J. Borgosz, "Application of a rat-race coupler in low-cost load and source pull transistor amplifier design," Microwave Opt. Technol. Lett., Vol. 51, No. 11, 2537-2541, 2009.
doi:10.1002/mop.24668 Google Scholar
3. Jin, H., K. S. Chin, W. Che, C. C. Chang, H. J. Li, and Q. Xue, "Differential-fed patch antenna arrays with low cross polarization and wide bandwidths," IEEE Antennas Wirel. Propag. Lett., Vol. 13, 1069-1072, 2014. Google Scholar
4. Chin, K.-S., J.-A. Liu, C. C. Chang, and J.-C. Cheng, "LTCC differential-fed patch antennas with rat-race feeding structures," Progress In Electromagnetics Research C, Vol. 32, 95-108, 2012.
doi:10.2528/PIERC12071802 Google Scholar
5. March, S., "A wideband stripline hybrid ring," IEEE Trans. Microwave Theory Tech., Vol. 16, No. 6, 361-362, 1968.
doi:10.1109/TMTT.1968.1126693 Google Scholar
6. Ahn, H.-R. and B. Kim, "Small wideband coupled-line ring hybrids with no restriction on coupling power," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 7, 1806-1817, 2009.
doi:10.1109/TMTT.2009.2022815 Google Scholar
7. Ahn, H.-R. and S. Nam, "Wideband microstrip coupled-line ring hybrids for high power-division ratios," IEEE Trans. Microwave Theory Tech., Vol. 61, No. 5, 1768-1780, 2013.
doi:10.1109/TMTT.2013.2251654 Google Scholar
8. Yeung, L. K. and Y. E. Wang, "A novel 180◦ hybrid using broadside-coupled asymmetric coplanar striplines," IEEE Trans. Microwave Theory Tech., Vol. 55, No. 12, 2625-2630, 2007.
doi:10.1109/TMTT.2007.910067 Google Scholar
9. Liu, G.-Q., L.-S. Wu, and W.-Y. Yin, "A compact microstrip rat-race coupler with modified Lange and T-shaped arms," Progress In Electromagnetics Research, Vol. 115, 509-523, 2011.
doi:10.2528/PIER11032003 Google Scholar
10. Mo, T. T., Q. Xue, and C. H. Chan, "A broadband compact microstrip rat-race hybrid using a novel CPW inverter," IEEE Trans. Microwave Theory Tech., Vol. 55, No. 1, 161-167, 2007.
doi:10.1109/TMTT.2006.888938 Google Scholar
11. Kim, Y.-G., S.-Y. Song, and K. W. Kim, "A compact wideband ring coupler utilizing a pair of transitions for phase inversion," IEEE Microwave Wireless Compon. Lett., Vol. 21, No. 1, 25-27, 2011.
doi:10.1109/LMWC.2010.2089438 Google Scholar
12. Wang, T. and K. Wu, "Size-reduction and band-broadening design technique of uniplanar hybrid ring coupler using phase inverter for M(H)MIC’s," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 2, 198-206, 1999.
doi:10.1109/22.744295 Google Scholar
13. Lin, F., Q.-X. Chu, and S. W. Wong, "Compact broadband microstrip rat-race couplers using microstrip/slotline phase inverters for arbitrary power-dividing ratios," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 17–18, 2358-2364, 2012.
doi:10.1080/09205071.2012.734437 Google Scholar
14. Ahn, H.-R., I.Wolff, and I.-S. Chang, "Arbitrary termination impedances, arbitrary power division, and small-sized ring hybrids," IEEE Trans. Microwave Theory Tech., Vol. 45, No. 12, 2241-2247, 1997.
doi:10.1109/22.643824 Google Scholar
15. Heimer, B. R., L. Fan, and K. Chang, "Uniplanar hybrid couplers using asymmetrical coplanar striplines," IEEE Trans. Microwave Theory Tech., Vol. 45, No. 12, 2234-2240, 1997.
doi:10.1109/22.643822 Google Scholar
16. Okabe, H., C. Caloz, and T. Itoh, "A compact enhanced-bandwidth hybrid ring using an artificial lumped-element left-handed transmission-line section," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 3, 798-804, 2004.
doi:10.1109/TMTT.2004.823541 Google Scholar
17. Wu, Y., Z. Zhuang, L. Jiao, and Y. Liu, "A compact planar wide-band balun with high isolation based on coupled-line and composite right-left-handed transmission line," Microwave Opt. Technol. Lett., Vol. 58, No. 2, 372-376, 2016.
doi:10.1002/mop.29567 Google Scholar
18. Joubert, J. and J. W. Odendaal, "Design of compact planar rat-race and branch-line hybrid couplers using polar curves," Microwave Opt. Technol. Lett., Vol. 57, No. 11, 2637-2640, 2015.
doi:10.1002/mop.29397 Google Scholar
19. Mandal, M. K. and X. S. Sanyal, "Reduced-length rat-race coupler," IEEE Trans. Microwave Theory Tech., Vol. 55, No. 12, 2593-2598, 2007.
doi:10.1109/TMTT.2007.910058 Google Scholar
20. Chuang, M.-L., "Miniaturized ring coupler of arbitrary reduced size," IEEE Microwave Wireless Compon. Lett., Vol. 15, No. 1, 16-18, 2005.
doi:10.1109/LMWC.2004.840960 Google Scholar
21. Ahn, H.-R. and S. Nam, "Compact microstrip 3-dB coupled-line ring and branch-line hybrids with new symmetric equivalent circuits," IEEE Trans. Microwave Theory Tech., Vol. 61, No. 3, 1067-1078, 2013.
doi:10.1109/TMTT.2013.2241783 Google Scholar
22. Kuo, J. T., J. S. Wu, and Y. C. Chiou, "Miniaturized rat race coupler with suppression of spurious passband," IEEE Microwave Wireless Compon. Lett., Vol. 17, No. 1, 46-48, 2007.
doi:10.1109/LMWC.2006.887254 Google Scholar
23. Mondal, P. and A. Chakrabarty, "Design of miniaturised branch-line and rat-race hybrid couplers with harmonics suppression," IET Microwave Antennas Propag., Vol. 3, No. 1, 109-116, 2009.
doi:10.1049/iet-map:20070202 Google Scholar
24. Lai, C.-H. and T.-G. Ma, "Miniaturised rat-race coupler with second and third harmonic suppression using synthesised transmission lines," Electron. Lett., Vol. 49, No. 22, 1394-1396, 2013.
doi:10.1049/el.2013.2975 Google Scholar
25. Nie, W., S. Luo, Y.-X. Guo, and Y. Fan, "Miniaturized rat-race coupler with harmonic suppression," IEEE Microwave Wireless Compon. Lett., Vol. 24, No. 11, 754-756, 2014.
doi:10.1109/LMWC.2014.2350253 Google Scholar
26. Eccleston, K. W. and S. H. M. Ong, "Compact planar microstripline branch-line and rat-race couplers," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 10, 2119-2125, 2003.
doi:10.1109/TMTT.2003.817442 Google Scholar
27. Zhang, J. and X.-W. Sun, "Harmonic suppression of branch-line and rat-race coupler using complementary spilt ring resonators (CSRR) cell," Progress In Electromagnetics Research Letters, Vol. 2, 73-79, 2008.
doi:10.2528/PIERL07122702 Google Scholar
28. Kazerooni, M. and M. Aghalari, "Size reduction and harmonic suppression of rat-race hybrid coupler using defected microstrip structure," Progress In Electromagnetics Research Letters, Vol. 26, 87-96, 2011.
doi:10.2528/PIERL11071704 Google Scholar
29. He, Q., Y. Wen, S. Chen, and K. Wang, "A compact uniplanar rat-race coupler with arbitrary power division ratio and harmonics suppression," Progress In Electromagnetics Research Letters, Vol. 52, 71-78, 2015.
doi:10.2528/PIERL15011604 Google Scholar
30. Shie, C. I., J. C. Cheng, S. C. Chou, and Y. C. Chiang, "Transdirectional coupled-line couplers implemented by periodical shunt capacitors," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 12, 2981-2988, 2009.
doi:10.1109/TMTT.2009.2034219 Google Scholar
31. Zysman, G. and A. K. Johnson, "Coupled transmission line networks in an inhomogeneous dielectric medium," IEEE Trans. Microwave Theory Tech., Vol. 17, No. 10, 753-759, 1969.
doi:10.1109/TMTT.1969.1127055 Google Scholar
32. Pozar, D. M., Microwave Engineering, 4 Ed., John Wiley & Sons, New York, 2012.