1. Salisbury, W. W., "U.S. Patent, Absorbent body for electromagnetic waves,", No. 2599944, 1952. Google Scholar
2. Eugene, F. K., F. J. Shaeffer, and M. T. Tuley, Radar Cross Section, 2nd Ed., 9-10, Artech House, Norwood, MA, USA, 1993.
doi:10.1109/TAP.2006.888395
3. Munk, B., P. Munk, and J. Prior, "On designing Jaumann and circuit analog absorbers for oblique angle of incidence," IEEE Trans. Antennas Propag., Vol. 55, No. 1, 2007. Google Scholar
4. Sudhendra, C., V. Mahule, A. C. R. Pillai, A. K. Mohanty, and K. Rao, "Novel embedded passives resistor grid network based wideband radar absorber," IEEE Intl. Conf. on Elect., Computing and Comm. Technologies — IEEE CONECCT, 1-4, DOI: 10.1109/CONECCT 2014.6740359, 2014.
doi:10.1109/TAP.2009.2024490 Google Scholar
5. Zadeh, A. K. and A. Karlsson, "Capacitive circuit method for fast and efficient design of wideband radar absorbers," IEEE Trans. Antennas Propag., Vol. 57, No. 8, 2307-2314, Aug. 2009. Google Scholar
6. Costa, F. and A. Monorchio, "Electromagnetic absorbers based on high-impedance surfaces: From ultra-narrowband to ultra-wideband absorption," Advanced Electromagnetics, Vol. 1, No. 3, Oct. 2012.
doi:10.1002/mop.28986 Google Scholar
7. Silva, M. W. B., A. L. P. S. Campos, and L. C. Kretly, "Design of thin microwave absorbers using lossy frequency selective surfaces," Microw. Opt. Technol. Lett., Vol. 57, No. 4, Apr. 2015.
doi:10.1109/5.32056 Google Scholar
8. Hansen, R. C., "Relationships between antennas as scatterers and radiators," Proc. IEEE, Vol. 77, No. 5, 659-662, May 1989.
doi:10.1109/TAP.2012.2189701 Google Scholar
9. Genovesi, S., F. Costa, and A. Monorchio, "Low-profile array with reduced radar cross section by using hybrid frequency selective surfaces," IEEE Trans. Antennas Propag., Vol. 60, No. 5, 2327-2335, May 2012.
doi:10.2528/PIERC14050503 Google Scholar
10. Zheng, J., S. Fang, Y. Jia, and Y. Liu, "RCS reduction of patch array antenna by complementary split-ring resonators structure," Progress In Electromagnetics Research C, Vol. 51, 95-101, 2014.
doi:10.1049/el.2016.0336 Google Scholar
11. Joozdani, M. Z., M. K. Amirhosseini, and A. Abdolali, "Wideband radar cross-section of patch array antenna with miniaturised hexagonal loop frequency selective surface," Electron. Lett., Vol. 52, No. 9, 767-768, Apr. 2016.
doi:10.1049/el.2015.1725 Google Scholar
12. Hao, Y., Y. Liu, K. Li, and S. Gong, "Wide band radar cross section reduction of microstrip patch antenna with split-ring resonators," Electron. Lett., Vol. 51, No. 20, 1608-1609, Oct. 2015.
doi:10.1109/LAWP.2015.2402292 Google Scholar
13. Liu, Y., Y. Hao, H.Wang, K. Li, and S. Gong, "Low RCS microstrip patch antenna using frequencyselective surface and microstrip resonator," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1290-1293, Feb. 2015.
doi:10.1049/el.2014.1003 Google Scholar
14. Jia, Y., Y. Liu, H. Wang, and S. Gong, "Low RCS microstrip antenna using polarization-dependent frequency selective surface," Electron. Lett., Vol. 50, No. 14, 978-979, 2014.
doi:10.1049/iet-map:20070012 Google Scholar
15. He, W., R. Jin, and J. Geng, "Low radar cross-section and high performances of microstrip antenna using fractal uniplanar compact electromagnetic band gap ground," IEEE Microw., Antennas Propag., Vol. 1, No. 5, 986-991, 2007.
doi:10.1002/mop.27144 Google Scholar
16. Miao, Z., C. Huang, X. Ma, M. Pu, X. Ma, Q. Zhao, and X. Luo, "Design of a patch antenna with dual-band radar cross section reduction," Microw. Opt. Technol. Lett., Vol. 54, No. 11, 2516-2520, Nov. 2012. Google Scholar
17. Zhao, Y., X. Cao, J. Gao, X. Yao, T. Liu, W. Li, and S. Li, "Broadband metamaterial surface for antenna RCS reduction and gain enhancement," IEEE Trans. Antennas Propag., early access, 2015.
doi:10.1002/mop.28442 Google Scholar
18. Chen, Q. and Y. Fu, "A planar stealthy antenna Radome using absorptive frequency selective surface," Microw. Opt. Technol. Lett., Vol. 56, No. 8, 1788-1792, 2014.
doi:10.1109/TAP.2016.2518199 Google Scholar
19. Huang, C., W. Pan, X. Ma, and X. Luo, "A frequency reconfigurable directive antenna with wideband low-RCS property," IEEE Trans. Antennas Propag., Vol. 64, No. 3, 1173-1178, Jan. 2016. Google Scholar
20. Liu, Y., Y. Hao, K. Li, and S. Gong, "Radar cross section reduction of a microstrip antenna based on polarization conversion metamaterial," IEEE Antennas Wireless Propag. Lett, Vol. 15, 80-83, May 2015.
doi:10.1002/mop.28442 Google Scholar
21. Zheng, Y.-J., J. Gao, X.-Y. Cao, S.-J. Li, and W.-Q. Lli, "Wideband RCS reduction and gain enhancement microstrip antenna using chessboard configuration superstrate," Microw. Opt. Technol. Lett., Vol. 56, No. 8, 1788-1792, 2014. Google Scholar
22. Zheng, J. and S. Fang, "A new method for designing low RCS patch antenna using frequency selective surface," Progress In Electromagnetics Research Letters, Vol. 57, No. 7, 1738-1741, Jul. 2015.
doi:10.1109/LAWP.2015.2407375 Google Scholar
23. Huang, C., W. Pan, X. Ma, B. Jiang, and X. Luo, "Wideband radar cross section reduction of a stacked patch array antenna using metasurface," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1369-1372, 2015.
doi:10.1109/8.884491 Google Scholar
24. Rozanov, K. N., "Ultimate thickness to bandwidth ratio of radar absorbers," IEEE Trans. Antennas Propag., Vol. 48, No. 8, 1230-1234, Aug. 2000. Google Scholar