1. Tesla, N., "Apparatus for transmitting electrical energy,", US Patent, Serial No. 371817, 1–4, Dec. 1914. Google Scholar
2. Olvitz, L., D. Vinko, and T. Svedek, "Wireless power transfer for mobile phone charging device," MIPRO, Proc. of the 35th International Convention, 141-145, Opatija, Croatia, May 2012.
doi:10.1109/TCE.2015.7150569 Google Scholar
3. Nguyen, V. T., S. H. Kang, J. H. Choi, and C. W. Jung, "Magnetic resonance wireless power transfer using three-coil system with single planar receiver for laptop applications," IEEE Tran. Consum. Electron., Vol. 61, No. 2, 160-166, May 2015.
doi:10.1109/TIE.2009.2031184 Google Scholar
4. Elliott, G. A. J., R. Stefan, G. A. Covic, and J. T. Boys, "Multiphase pickups for large lateral tolerance contactless power-transfer system," IEEE Tran. Ind. Electron., Vol. 57, No. 5, 1590-1598, May 2010. Google Scholar
5. Wang, G., W. Liu, M. Sivaprakasam, M. Zhou, J. D. Weiland, and M. S. Humayun, "A dual band wireless power and data telemetry for retinal prosthesis," Proc. IEEE EMBS Annual International Conference, 4392-4395, New York City, USA, Aug.–Sep. 2006. Google Scholar
6. Yan, G., D. Ye, P. Zan, K. Wang, and G. Ma, "Micro-robot for endoscope based on wireless power transfer," Proc. IEEE International Conference on Mechatron and Automat, 3577-3581, Harbin, China, Aug. 2007. Google Scholar
7. Freire, M. J., R. Marques, and L. Jelinek, "Experimental demonstration of a μ = −1 metamaterial lens for magnetic resonance imaging," Appl. Phys. Lett., Vol. 93, 23110, 1-3, Dec. 2008.
doi:10.1109/JPROC.2013.2245611 Google Scholar
8. Wang, B., W. Yerazunis, and K. H. Teo, "Wireless power transfer: metamaterials and array of coupled resonators," Proc. IEEE, Vol. 101, No. 6, 1359-1368, Jun. 2013. Google Scholar
9. Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, 83-86, Jul. 2007.
doi:10.1080/09205071.2013.829392 Google Scholar
10. Kim, Y. and S. Lim, "Compact magnetic coupled resonator with high efficiency during misaligned wireless power transmission," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 15, 1942-1948, Aug. 2013. Google Scholar
11. Wang, B., T. Nishino, and K. H. Teo, "Wireless power transmission efficiency enhancement with metamaterials," Proc. IEEE International Conference on Wireless Information Technology and System (ICWITS), 1-4, Honululu, HI, USA, Sep. 2010. Google Scholar
12. Urzhumov, Y. and D. R. Smith, "Metamaterial-enhanced coupling between magnetic dipoles for efficient wireless power transfer," Phys. Rev. B, Vol. 83, 205114, 1-10, May 2011. Google Scholar
13. Wang, B., K. H. Teo, T. Nishino, W. Yerazunis, J. Barnwell, and J. Zhang, "Experiments on wireless power transfer with metamaterials," Appl. Phys. Lett., Vol. 98, 254101, 1-3, Jun. 2011.
doi:10.2528/PIER13061711 Google Scholar
14. Fan, Y., L. Li, S. Yu, C. Zhu, and C. Liang, "Experimental study of efficient wireless power transfer system integrating with highly sub-wavelength metamaterials," Progress In Electromagnetics Research, Vol. 141, 769-784, Aug. 2013.
doi:10.1109/TMTT.2014.2304927 Google Scholar
15. Rajagopalan, A., A. K. RamRakhyani, D. Schurig, and G. Lazzi, "Improving power transfer efficiency of a short-range telemetry system using compact metamaterials," IEEE Tran. Microw. Theory Tech., Vol. 62, No. 4, 947-955, Apr. 2014.
doi:10.1049/iet-map.2013.0387 Google Scholar
16. Park, J. H., B. C. Park, Y. H. Ryu, E. S. Park, and J. H. Lee, "Modified mu-zero resonator for efficient wireless power transfer," IET Microw. Ant. Propag., Vol. 8, No. 12, 912-920, Mar. 2014.
doi:10.1049/el.2014.1596 Google Scholar
17. Kim, H. and C. Seo, "Highly efficient wireless power transfer using metamaterial slab with zero refractive property," Electronics Lett., Vol. 50, No. 16, 1158-1160, Jul. 2014.
doi:10.1109/TMTT.2016.2549526 Google Scholar
18. Rodriguez, E. S. G., A. K. Ram Rakhyani, D. Schurig, and G. Lazzi, "Compact low frequency metamaterial design for wireless power transfer efficiency enhancement," IEEE Tran. Microw. Theory Techn., Vol. 64, No. 5, 1644-1654, May 2016. Google Scholar
19. Kolb, P. W., T. S. Salter, J. A. McGee, H. D. Drew, and W. J. Padilla, "Extreme subwave length electric GHz metamaterials," J. Appl. Phys., Vol. 110, 054906, 1-5, Sep. 2011.
doi:10.1109/TMTT.2010.2065310 Google Scholar
20. Szabo, Z., G. H. Park, R. Hedge, and E. P. Li, "A unique extraction of metamaterial parameters based on Kramers-Kronig relationship," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 10, 2646-2653, Oct. 2010.
doi:10.1109/TBCAS.2012.2192115 Google Scholar
21. RamRakhyani, A. K. and G. Lazzi, "On the design of efficient multi-coil telemetry system for biomedical implant," IEEE Tran. Biomedical Circuits Sys., Vol. 7, No. 1, 11-23, Feb. 2013. Google Scholar