1. Watters, F. L., "Microwave radiation for control of tribolium confusum in wheat and flour," J. Stored Prod. Res., Vol. 12, No. 1, 19-25, 1976.
doi:10.1016/0022-474X(76)90018-7 Google Scholar
2. Vadivambal, R., "Assessment of microwave energy for disinfestation of grain,", No. 05, 2005. Google Scholar
3. Ponomaryova, I. A., L. Nino de Rivera y Oyarzabal, and E. Ruiz Sanchez, "Interaction of radiofrequency, high-strength electric fields with harmful insects," Inrenational Microwave Power Institute, 17-27, Mar. 2010. Google Scholar
4. Esime-culhuacan, S. and I. P. Nacional, "Interaction of radio frequency, high strength electric fields with harmful insects,", 17-27, 2003. Google Scholar
5. Nelson, S. O. and P. G. Bartley, "Measuring frequency and temperature dependent permittivities of food materials," IEEE Transactions on Instrumentation and Measurement, Vol. 51, No. 4, 589-592, 2002.
doi:10.1109/TIM.2002.802244 Google Scholar
6. Garg, R., P. Bhartia, I. Bahl, and A. Ittipibon, Microstrip Antenna Design Handbook, IEEE Antenna and Propagation Magazine, Vol. 45, No. 2, 875, 2001.
7. Ain, M. F., Y. M. Qasaymeh, Z. A. Ahmad, M. A. Zakariya, and U. Ullah, "An equivalent circuit of microstrip slot coupled rectangular dielectric resonator antenna," PIERS Proceedings, 1837-1840, KL, Malaysia, March 27–30, 2012. Google Scholar
8. Waterhouse, R. B., Printed Antennas for Wireless Communications, John Wiley Sons Inc., 2007.
doi:10.1002/9780470512241
9. Ouedraogo, R. O. and E. J. Rothwell, "Metamaterial inspired patch antenna miniaturization technique," IEEE Antennas and Propagation Society International Symposium, 1-4, 2010. Google Scholar
10. Sukhadia, M. B and V. G. Kasabegoudar, "Investigation of mutual coupling effects in conventional and fractal capacitive coupled suspended RMSAs," International Journal of Wireless Communications and Mobile Computing, Vol. 1, No. 4, 119-123, 2013.
doi:10.11648/j.wcmc.20130104.16 Google Scholar
11. Mandelbrot, B. B., Fractal and the Geometry of the Nature, 1st Ed., W. H. Freeman and Company, 1975.
12. Shafie, S. N., I. Adam, and P. J. Soh, "Design and simulation of a modified Minkowski fractal antenna for tri-band application," Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation (AMS), No. 1, 2-5, 2010. Google Scholar
13. Vinoy, K. J., "Fractal shaped antenna elements for wide and multiband wireless applications,", The Pennsylvania State University, The Graduate School College of Engineering Fractal, 2002. Google Scholar
14. Salar Rahimi, M. and J. Rashed-Mohassel, "Gain and impedance matching improvement of Sierpinski carpet patch antenna using dual band EBG structure," Asia-Pacific Microwave Conference Proceedings (APMC), 681-684, 2011. Google Scholar
15. Oraizi, H. and S. Hedayati, "Wideband monopole fractal antenna with Hilbert fractal slot patterned ground plane," 2011 41st European Microwave Conference (EuMc), 242-245, 2010. Google Scholar
16. Ahmad, B. H., H. Nornikman, M. Z. A. Abd Aziz, M. A. Othman, and A. R. Othman, "Tri-band Minkowski island patch antenna with complementary split ring resonator at the ground plane," 2013 Microwave Technologies Conference, 46-51, Apr. 2013.
doi:10.1109/COMITE.2013.6545042 Google Scholar
17. Sathya, K., "Size reduction of low frequency microstrip patch antennas with koch fractal slots,", M. Tech Thesis, Indian Inst. Sci. Bangalore, 2004. Google Scholar
18. Khare, R. and R. Nema, "Reflection coefficient analysis of Chebyshev impedance matching network using different algorithms," International Journal of Innovative Research in Science, Engineering and Technology, Vol. 1, No. 2, 214-218, 2012. Google Scholar
19. Chih-Ming, T., et al. "Nonsynchronous alternating-impedance transformers," Asia-Pacific Microwave Conference (APMC), Vol. 1, 310-313, 2001. Google Scholar
20. Monzon, C., "Analytical derivation of a two-section impedance transformer for a frequency and its first harmonic," IEEE Microwave and Wireless Components Letters, Vol. 12, No. 10, 381-382, 2002.
doi:10.1109/LMWC.2002.804558 Google Scholar
21. Wu, L., et al. "A dual-frequency Wilkinson power divider: For a frequency and its first harmonic," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 2, 2004-2006, 2005.
doi:10.1109/LMWC.2004.842848 Google Scholar
22. Jose da Silva, H., M. Joao do Rosario, and C. Peixeiro, "From passive microstrip single patch antennas to active microstrip patch arrays," Instituto de Telecomunicacoes, Lisboa, Portugal, 2001. Google Scholar
23. Lin, J. and T. Itoh, "Active integrated antennas," IEEE. Transactions on Microwave Theory and Techniques, Vol. 42, No. 12, 1994. Google Scholar
24. Chang, K., R. A. York, P. S. Hall, and T. Itoh, "Active integrated antennas," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 3, 937-944, 2002.
doi:10.1109/22.989976 Google Scholar
25. Swamy, K. and M. Veluri, "Active integrated antenna (AIA) system for wireless communication," International Journal of Scientific and Research Publications, Vol. 3, No. 11, 1-5, 2013. Google Scholar
26. Liou, W., et al. "Design and implementation of a low-voltage 2.4-GHz CMOS RF receiver front-end for wireless communication," Journal of Marine Science and Technology, Vol. 13, No. 3, 170-175, 2005. Google Scholar
27. Pozar, D. M., "Microstrip antennas," Proceeding of IEEE, Vol. 80, No. 1, 79-91, 1992.
doi:10.1109/5.119568 Google Scholar
28. Peter, T., et al. "Active integrated antenna with low noise amplifier design at 5GHz," 2nd European Conference on Antennas and Propagation (EuCAP), 1-6, Nov. 2007. Google Scholar
29. Zurcher, J. F. and F. E. Gardiol, Broadband Patch Antennas, Artech House, Norwood, MA, 1995.
30. Radisic, V., et al. "Novel 2-D photonic band gap structures for microstrip lines," IEEE Microwave Guided Wave Lett., Vol. 8, 69-71, 1998.
doi:10.1109/75.658644 Google Scholar
31. Qian, Y., et al. "Microstrip patch antenna using novel photonic band gap structures," Microwave J., Vol. 42, 66-76, Jan. 1999. Google Scholar
32. Karmakar, N. C. and M. N. Mollah, "Investigations into nonuniform photonic-bandgap microstripline low-pass filters,", Vol. 51, No. 2, 564-572, 2003. Google Scholar
33. Http://www.minicircuits.com/MCLStore/ModelInfoDisplay?14093539187760.14037500767787614 "Surface mount amplifier," Mini Circuit. Google Scholar
34. Khodier, M., et al. "Design of multiband multi-section transmission line transformer using particle swarm optimization," Electrical Engineering, Springer, Vol. 90, No. 4, 293-300, 2008.
doi:10.1007/s00202-007-0077-z Google Scholar
35. Pozar, D. M., Microwave Engineering, Addison-Wesley Publ. Co., 1993.
36. Orfanidis, S. J., "A two-section dual-band Chebyshev," IEEE Microwave and Wireless Components Letters, Vol. 13, No. 9, 382-384, 2003.
doi:10.1109/LMWC.2003.817135 Google Scholar
37. Ming, C., "Novel design method of a multi-section transmission-line transformer using genetic algorithm techniques," International Conference on Electrical Machines and Systems (ICEMS), 3793-3796, 2008. Google Scholar
38. Coupler, D., Antenna Measurements, 120-129, IEEE Library.
39. Noori, O., J. Chebil, M. R. Islam, and S. Khan, "Design of a triple-band h slot patch antenna," International Conference on RF and Microwave (RFM), 289-292, Dec. 2011. Google Scholar
40. Kulkarni, S. D. and S. N. Makarov, "A compact dual-band foam-based UHF PIFA," IEEE Antennas and Propagation Society Symposium, 3609-3612, 2006. Google Scholar
41. Avila-navarro, E., J. A. Carrasco, and C. Rei, "Dual printed antenna for Wi-Fi applications," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 596-598, 2009.
doi:10.1109/LAWP.2009.2023542 Google Scholar
42. Dai, X.-W., Z.-Y. Wang, X. Chen, and L. Wang, "Multiband and dual-polarized omnidirectional antenna for 2G/3G/LTE application," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1492-1495, 2013.
doi:10.1109/LAWP.2013.2289743 Google Scholar
43. Kim, S. and K. Min, "Design for multiband monopole antenna with parasitic elements for inbuilding mobile communication," Wireless and Mobile, 92-95, 2014. Google Scholar
44. Sharma, D. and M. S. Hashmi, "A novel design of tri-band patch antenna for GSM/WiFi/WiMAX applications," Microwave and RF IEEE International Conference (IMaRC), 156-158, 2014.
doi:10.1109/IMaRC.2014.7038995 Google Scholar
45. Rouissi, I., I. B. E. N. Trad, J. F. H, H. Rmili, and H. Trabelsi, "Design of frequency reconfigurable triband antenna using capacitive loading for wireless communications," Antennas & Propagation Loughborough Conference (LAPC), 3-7, 2015. Google Scholar