Vol. 69
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-11-21
Photonic Band Gap Aperture Coupled Fractal Shape Tri-Band Active Antenna
By
Progress In Electromagnetics Research C, Vol. 69, 125-138, 2016
Abstract
A modified Koch fractal shape is used to decrease the dimensions of an antenna and resonates at more than one band for agricultural application. A new feeding technique of aperture coupled method called a non-uniform annular Photonic Band Gap is applied in order to integrate the designed antenna to the active elements. Subsequently, a transmission line transformer is designed using Genetic algorithm to achieve a perfect matching between the active element (amplifier) and the load (antenna). The proposed antenna is designed and fabricated. The results show that the proposed antenna has a high gain of 20.5 dB, 21 dB, and 22 dB at 0.915 GHz, 1.8 GHz and 2.45 GHz respectively with a compact size and low cost. The results predict its prospect as a promising alternative to the conventional one, which is compatibly applicable to agriculture applications especially when multiband function is required.
Citation
Tale Saeidi, Idris Bin Ismail, Mojtaba Ahadi, and Adam Reda Hasan Alhawari, "Photonic Band Gap Aperture Coupled Fractal Shape Tri-Band Active Antenna," Progress In Electromagnetics Research C, Vol. 69, 125-138, 2016.
doi:10.2528/PIERC16082901
References

1. Watters, F. L., "Microwave radiation for control of tribolium confusum in wheat and flour," J. Stored Prod. Res., Vol. 12, No. 1, 19-25, 1976.
doi:10.1016/0022-474X(76)90018-7        Google Scholar

2. Vadivambal, R., "Assessment of microwave energy for disinfestation of grain,", No. 05, 2005.        Google Scholar

3. Ponomaryova, I. A., L. Nino de Rivera y Oyarzabal, and E. Ruiz Sanchez, "Interaction of radiofrequency, high-strength electric fields with harmful insects," Inrenational Microwave Power Institute, 17-27, Mar. 2010.        Google Scholar

4. Esime-culhuacan, S. and I. P. Nacional, "Interaction of radio frequency, high strength electric fields with harmful insects,", 17-27, 2003.        Google Scholar

5. Nelson, S. O. and P. G. Bartley, "Measuring frequency and temperature dependent permittivities of food materials," IEEE Transactions on Instrumentation and Measurement, Vol. 51, No. 4, 589-592, 2002.
doi:10.1109/TIM.2002.802244        Google Scholar

6. Garg, R., P. Bhartia, I. Bahl, and A. Ittipibon, Microstrip Antenna Design Handbook, IEEE Antenna and Propagation Magazine, Vol. 45, No. 2, 875, 2001.

7. Ain, M. F., Y. M. Qasaymeh, Z. A. Ahmad, M. A. Zakariya, and U. Ullah, "An equivalent circuit of microstrip slot coupled rectangular dielectric resonator antenna," PIERS Proceedings, 1837-1840, KL, Malaysia, March 27–30, 2012.        Google Scholar

8. Waterhouse, R. B., Printed Antennas for Wireless Communications, John Wiley Sons Inc., 2007.
doi:10.1002/9780470512241

9. Ouedraogo, R. O. and E. J. Rothwell, "Metamaterial inspired patch antenna miniaturization technique," IEEE Antennas and Propagation Society International Symposium, 1-4, 2010.        Google Scholar

10. Sukhadia, M. B and V. G. Kasabegoudar, "Investigation of mutual coupling effects in conventional and fractal capacitive coupled suspended RMSAs," International Journal of Wireless Communications and Mobile Computing, Vol. 1, No. 4, 119-123, 2013.
doi:10.11648/j.wcmc.20130104.16        Google Scholar

11. Mandelbrot, B. B., Fractal and the Geometry of the Nature, 1st Ed., W. H. Freeman and Company, 1975.

12. Shafie, S. N., I. Adam, and P. J. Soh, "Design and simulation of a modified Minkowski fractal antenna for tri-band application," Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation (AMS), No. 1, 2-5, 2010.        Google Scholar

13. Vinoy, K. J., "Fractal shaped antenna elements for wide and multiband wireless applications,", The Pennsylvania State University, The Graduate School College of Engineering Fractal, 2002.        Google Scholar

14. Salar Rahimi, M. and J. Rashed-Mohassel, "Gain and impedance matching improvement of Sierpinski carpet patch antenna using dual band EBG structure," Asia-Pacific Microwave Conference Proceedings (APMC), 681-684, 2011.        Google Scholar

15. Oraizi, H. and S. Hedayati, "Wideband monopole fractal antenna with Hilbert fractal slot patterned ground plane," 2011 41st European Microwave Conference (EuMc), 242-245, 2010.        Google Scholar

16. Ahmad, B. H., H. Nornikman, M. Z. A. Abd Aziz, M. A. Othman, and A. R. Othman, "Tri-band Minkowski island patch antenna with complementary split ring resonator at the ground plane," 2013 Microwave Technologies Conference, 46-51, Apr. 2013.
doi:10.1109/COMITE.2013.6545042        Google Scholar

17. Sathya, K., "Size reduction of low frequency microstrip patch antennas with koch fractal slots,", M. Tech Thesis, Indian Inst. Sci. Bangalore, 2004.        Google Scholar

18. Khare, R. and R. Nema, "Reflection coefficient analysis of Chebyshev impedance matching network using different algorithms," International Journal of Innovative Research in Science, Engineering and Technology, Vol. 1, No. 2, 214-218, 2012.        Google Scholar

19. Chih-Ming, T., et al. "Nonsynchronous alternating-impedance transformers," Asia-Pacific Microwave Conference (APMC), Vol. 1, 310-313, 2001.        Google Scholar

20. Monzon, C., "Analytical derivation of a two-section impedance transformer for a frequency and its first harmonic," IEEE Microwave and Wireless Components Letters, Vol. 12, No. 10, 381-382, 2002.
doi:10.1109/LMWC.2002.804558        Google Scholar

21. Wu, L., et al. "A dual-frequency Wilkinson power divider: For a frequency and its first harmonic," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 2, 2004-2006, 2005.
doi:10.1109/LMWC.2004.842848        Google Scholar

22. Jose da Silva, H., M. Joao do Rosario, and C. Peixeiro, "From passive microstrip single patch antennas to active microstrip patch arrays," Instituto de Telecomunicacoes, Lisboa, Portugal, 2001.        Google Scholar

23. Lin, J. and T. Itoh, "Active integrated antennas," IEEE. Transactions on Microwave Theory and Techniques, Vol. 42, No. 12, 1994.        Google Scholar

24. Chang, K., R. A. York, P. S. Hall, and T. Itoh, "Active integrated antennas," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 3, 937-944, 2002.
doi:10.1109/22.989976        Google Scholar

25. Swamy, K. and M. Veluri, "Active integrated antenna (AIA) system for wireless communication," International Journal of Scientific and Research Publications, Vol. 3, No. 11, 1-5, 2013.        Google Scholar

26. Liou, W., et al. "Design and implementation of a low-voltage 2.4-GHz CMOS RF receiver front-end for wireless communication," Journal of Marine Science and Technology, Vol. 13, No. 3, 170-175, 2005.        Google Scholar

27. Pozar, D. M., "Microstrip antennas," Proceeding of IEEE, Vol. 80, No. 1, 79-91, 1992.
doi:10.1109/5.119568        Google Scholar

28. Peter, T., et al. "Active integrated antenna with low noise amplifier design at 5GHz," 2nd European Conference on Antennas and Propagation (EuCAP), 1-6, Nov. 2007.        Google Scholar

29. Zurcher, J. F. and F. E. Gardiol, Broadband Patch Antennas, Artech House, Norwood, MA, 1995.

30. Radisic, V., et al. "Novel 2-D photonic band gap structures for microstrip lines," IEEE Microwave Guided Wave Lett., Vol. 8, 69-71, 1998.
doi:10.1109/75.658644        Google Scholar

31. Qian, Y., et al. "Microstrip patch antenna using novel photonic band gap structures," Microwave J., Vol. 42, 66-76, Jan. 1999.        Google Scholar

32. Karmakar, N. C. and M. N. Mollah, "Investigations into nonuniform photonic-bandgap microstripline low-pass filters,", Vol. 51, No. 2, 564-572, 2003.        Google Scholar

33. Http://www.minicircuits.com/MCLStore/ModelInfoDisplay?14093539187760.14037500767787614 "Surface mount amplifier," Mini Circuit.        Google Scholar

34. Khodier, M., et al. "Design of multiband multi-section transmission line transformer using particle swarm optimization," Electrical Engineering, Springer, Vol. 90, No. 4, 293-300, 2008.
doi:10.1007/s00202-007-0077-z        Google Scholar

35. Pozar, D. M., Microwave Engineering, Addison-Wesley Publ. Co., 1993.

36. Orfanidis, S. J., "A two-section dual-band Chebyshev," IEEE Microwave and Wireless Components Letters, Vol. 13, No. 9, 382-384, 2003.
doi:10.1109/LMWC.2003.817135        Google Scholar

37. Ming, C., "Novel design method of a multi-section transmission-line transformer using genetic algorithm techniques," International Conference on Electrical Machines and Systems (ICEMS), 3793-3796, 2008.        Google Scholar

38. Coupler, D., Antenna Measurements, 120-129, IEEE Library.

39. Noori, O., J. Chebil, M. R. Islam, and S. Khan, "Design of a triple-band h slot patch antenna," International Conference on RF and Microwave (RFM), 289-292, Dec. 2011.        Google Scholar

40. Kulkarni, S. D. and S. N. Makarov, "A compact dual-band foam-based UHF PIFA," IEEE Antennas and Propagation Society Symposium, 3609-3612, 2006.        Google Scholar

41. Avila-navarro, E., J. A. Carrasco, and C. Rei, "Dual printed antenna for Wi-Fi applications," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 596-598, 2009.
doi:10.1109/LAWP.2009.2023542        Google Scholar

42. Dai, X.-W., Z.-Y. Wang, X. Chen, and L. Wang, "Multiband and dual-polarized omnidirectional antenna for 2G/3G/LTE application," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1492-1495, 2013.
doi:10.1109/LAWP.2013.2289743        Google Scholar

43. Kim, S. and K. Min, "Design for multiband monopole antenna with parasitic elements for inbuilding mobile communication," Wireless and Mobile, 92-95, 2014.        Google Scholar

44. Sharma, D. and M. S. Hashmi, "A novel design of tri-band patch antenna for GSM/WiFi/WiMAX applications," Microwave and RF IEEE International Conference (IMaRC), 156-158, 2014.
doi:10.1109/IMaRC.2014.7038995        Google Scholar

45. Rouissi, I., I. B. E. N. Trad, J. F. H, H. Rmili, and H. Trabelsi, "Design of frequency reconfigurable triband antenna using capacitive loading for wireless communications," Antennas & Propagation Loughborough Conference (LAPC), 3-7, 2015.        Google Scholar