1. Ouyang, J., F. Yang, and Z. M. Wang, "Reducing mutual coupling of closely spaced microstrip MIMO antennas for WLAN application," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 310-313, 2011.
doi:10.1109/LAWP.2011.2140310 Google Scholar
2. Sarkar, D., A. Singh, K. Saurav, and K. V. Srivastava, "Four-element quad-band multipleinput-multiple-output antenna employing split-ring resonator and inter-digital capacitor," IET Microwaves, Antennas and Propagation, Vol. 9, No. 13, 1453-1460, 2015.
doi:10.1049/iet-map.2015.0189 Google Scholar
3. Yang, X. M., X. G. Liu, X. Y. Zhou, and T. J. Cui, "Reduction of mutual coupling between closely packed patch antennas using waveguided metamaterials," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 389-391, 2012.
doi:10.1109/LAWP.2012.2193111 Google Scholar
4. Bernety, H. M. and A. B. Yakovlev, "Reduction of mutual coupling between neighboring strip dipole antennas using confocal elliptical metasurface cloaks," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1554-1563, 2015.
doi:10.1109/TAP.2015.2398121 Google Scholar
5. Xu, H. X., G. M. Wang, M. Q. Qi, and H. Y. Zeng, "Ultra-small single-negative electric metamaterials for electromagnetic coupling reduction of microstrip antenna array," Optics Express, Vol. 20, 21968-21976, Sep. 2012.
doi:10.1364/OE.20.021968 Google Scholar
6. Al-Hasan, M. J., T. A. Denidni, and A. R. Sebak, "Millimeter-wave compact EBG structure for mutual coupling reduction applications," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 2, 823-828, 2015.
doi:10.1109/TAP.2014.2381229 Google Scholar
7. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2936-2946, 2003.
doi:10.1109/TAP.2003.817983 Google Scholar
8. Park, J. S., J. S. Yun, and D. Ahn, "A design of the novel coupled-line bandpass filter using defected ground structure with wide stopband performance," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 9, 2037-2043, 2002.
doi:10.1109/TMTT.2002.802313 Google Scholar
9. Farahani, H. S., M. Veysi, M. Kamyab, and A. Tadjalli, "Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 57-59, 2010.
doi:10.1109/LAWP.2010.2042565 Google Scholar
10. Salehi, M. and A. Tavakoli, "A novel low mutual coupling microstrip antenna array design using defected ground structure," International Journal of Electronics and Communications (AEU), Vol. 60, No. 10, 718-723, 2006.
doi:10.1016/j.aeue.2005.12.009 Google Scholar
11. Qian, K. and D. Gan, "Compact tunable network for closely spaced antennas with high isolation," Microwave and Optical Technology Letters, Vol. 58, No. 1, 65-69, 2016.
doi:10.1002/mop.29495 Google Scholar
12. Velez, P., J. Bonache, and F. Martın, "Dual and broadband power dividers at microwave frequencies based on composite right/left handed (CRLH) lattice networks," Photonics and Nanostructures — Fundamentals and Applications, Vol. 12, No. 4, 269-278, 2014.
doi:10.1016/j.photonics.2014.05.006 Google Scholar
13. Bemani, M. and S. Nikmehr, "Nonradiating arbitrary dual-band equal and unequal 1 : 4 series power divider based on CRLH-TL structures," IEEE Transactions on Industrial Electronics, Vol. 61, No. 3, 1223-1234, 2015.
doi:10.1109/TIE.2013.2258297 Google Scholar
14. Ren, X., K. Song, F. Zhang, and B. Hu, "Miniaturized gysel power divider based on composite right/left-handed transmission lines," IEEE Microwave Theory and Wireless Component Letters, Vol. 25, No. 1, 22-24, 2015.
doi:10.1109/LMWC.2014.2365747 Google Scholar
15. Ghosh, J., S. Ghosh, D. Mitra, and S. R. B. Chaudhuri, "Mutual coupling reduction between closely placed microstrip patch antenna using meander line resonator," Progress In Electromagnetics Research Letters, Vol. 59, 115-122, 2016.
doi:10.2528/PIERL16012202 Google Scholar
16. Blanch, J., J. Romeu, and I. Cordella, "Exact representation of antenna system diversity performance from input parameter description," Electronics Letters, Vol. 39, No. 9, 705-707, 2003.
doi:10.1049/el:20030495 Google Scholar
17. Zhao, L. and K. Wu, "A dual-band coupled resonator decoupling network for two coupled antennas," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 9, 2843-2850, 2015.
doi:10.1109/TAP.2015.2421973 Google Scholar
18. Lin, X. Q., D. Bao, H. F. Ma, and T. J. Cui, "Novel composite phase-shifting transmission-line and its application in the design of antenna array," IEEE Transactions on Antenna and Propagation, Vol. 58, No. 2, 375-380, 2010.
doi:10.1109/TAP.2009.2037764 Google Scholar
19. Caloz, C. and T. Itoh, "Transmission line approach of left-handed (LH) materials and microstrip implementation of an artificial LH transmission line," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 5, 1159-1166, 2004.
doi:10.1109/TAP.2004.827249 Google Scholar
20. Ludwing, R. and G. Bogdanov, RF Circuit Design: Theory and Applications Chinese Simplified Language Edition, 2nd Ed., Publishing House of Electronics Industry, Beijing, 2013.
21. Cui, W., R. Wang, H. Zhang, J. Li, T. Hu, and Y. Liu, Electromagnetic Metamaterials and Applications, 2nd Ed., National Defense Industry Press, Beijing, 2014.
22. Alley, G. D., "Interdigital capacitors and their application to lumped-element microwave integrated circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 18, No. 12, 1028-1033, 1970.
doi:10.1109/TMTT.1970.1127407 Google Scholar
23. Qiao, W., X. Gao, X. Yu, Y. Jiang, X. Yu, and W. Cao, "Compact power divider based on composite right/left-handed transmission line," The 11th International Symposium on Antennas, Propagation and EM Theory, to be published. Google Scholar