Vol. 71
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-02-08
A Novel Tunable Microstrip Patch Antenna Using Liquid Crystal
By
Progress In Electromagnetics Research C, Vol. 71, 101-109, 2017
Abstract
This paper presents a novel tunable microstrip patch antenna using liquid crystal. It adopts a differentially-driven, aperture-coupled, and stacked-patch structure. Compared with the conventional design, this novel antenna achieves a larger frequency tuning range, much wider impedance bandwidth, higher radiation efficiency and gain. Besides, the novel antenna facilitates the bias design as the bias signal is naturally isolated from the RF signal. Both the conventional and novel antennas are designed to operate at 28 GHz using an RT/Duroid 5880 substrate and K15 liquid crystal. Results show that the novel antenna has a tuning range of 3.1%, an impedance bandwidth of 6.43%, a peak radiation efficiency of 70%, and a peak realized gain of 6.5 dBi, while the conventional antenna has the tuning range of 2.7%, impedance bandwidth of 3.57%, peak radiation efficiency of 45%, and peak realized peak gain of 4.5 dBi.
Citation
Jia-Wei Dai Hong-Li Peng Yao-Ping Zhang Jun-Fa Mao , "A Novel Tunable Microstrip Patch Antenna Using Liquid Crystal," Progress In Electromagnetics Research C, Vol. 71, 101-109, 2017.
doi:10.2528/PIERC16120501
http://www.jpier.org/PIERC/pier.php?paper=16120501
References

1. Erdil, E., K. Topalli, and M. Unlu, "Frequency tunable microstrip patch antenna using RF MEMS technology," IEEE Trans. Antennas and Propagation, Vol. 55, No. 4, 1193-1196, April 2007.
doi:10.1109/TAP.2007.893426

2. Caekenberghe, K. V. and K. Sarabandi, "A 2-bit Ka-band RF MEMS frequency tunable slot antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 179-182, March 2008.
doi:10.1109/LAWP.2008.921390

3. Qin, P. Y., F. Wei, and Y. J. Guo, "A wideband-to-narrowband tunable antenna using a reconfigurable filter," IEEE Trans. Antennas and Propagation, Vol. 63, No. 5, 2282-2285, May 2015.
doi:10.1109/TAP.2015.2402295

4. Boukarkar, A., X. Q. Lin, and Y. Jiang, "A dual-band frequency-tunable magnetic dipole antenna for WiMAX/WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 492-495, July 2015.

5. Sazegar, M., Y. L. Zheng, H. Maune, C. Damm, X. H. Zhou, J. Binder, and R. Jakoby, "Low-cost phased-array antenna using compact tunable phase shifters based on ferroelectric ceramics," IEEE Trans. Microwave Theory and Techniques, Vol. 59, No. 5, 1265-1273, May 2011.
doi:10.1109/TMTT.2010.2103092

6. Lovat, G., P. Burghignoli, and S. Celozzi, "A tunable ferroelectric antenna for fixed-frequency scanning applications," IEEE Antennas and Wireless Propagation Letters, Vol. 5, No. 1, 353-356, December 2006.
doi:10.1109/LAWP.2006.880694

7. Missaoui, S., A. Gharbi, and M. Kaddour, "Design and simulation reconfigurable liquid crystal patch antennas on foam substrate," Journal of Chemical Engineering & Materials Science, Vol. 2, No. 7, 96-102, 2011.

8. Palomino, G. P., M. Barba, J. A. Encinar, R. Cahill, R. Dickie, P. Baine, and M. Bain, "Design and demonstration of an electronically scanned reflectarray antenna at 100 GHz using multiresonant cells based on liquid crystals," IEEE Trans. Antennas and Propagation, Vol. 63, No. 8, 3722-3727, August 2015.
doi:10.1109/TAP.2015.2434421

9. Papanicolaou, N. C., M. A. Christou, and A. C. Polycarpou, "Frequency-agile microstrip patch antenna on a biased liquid crystal substrate," Electron. Lett., Vol. 51, No. 3, 202-204, February 2015.
doi:10.1049/el.2014.3856

10. Polycarpou, A. C. and M. A. Christou, "Tunable patch antenna printed on a biased nematic liquid crystal cell," IEEE Trans. Antennas and Propagation, Vol. 62, No. 10, 4980-4987, July 2014.
doi:10.1109/TAP.2014.2344099

11. Liu, L. and R. J. Langley, "Liquid crystal tunable microstrip patch antenna," Electron. Lett., Vol. 44, No. 20, 1179-1180, September 2008.
doi:10.1049/el:20081995

12. Missaoui, S., S. Missaoui, and M. Kaddour, "Reconfigurable microstrip patch antenna based on liquid crystals for microwave applications," Proceedings of Engineering & Technology, 23-28, 2016.

13. Deo, P., D. M. Syahkal, L. Seddon, S. E. Day, and F. A. Fernandez, "Microstrip device for broadband (15–65 GHz) measurement of dielectric properties of nematic liquid crystals," IEEE Trans. Microwave Theory and Techniques, Vol. 63, No. 4, 1388-1398, April 2015.
doi:10.1109/TMTT.2015.2407328

14. Gao, S. C., L. W. Li, M. S. Leong, and T. S. Yeo, "A broad-band dual-polarized microstrip patch antenna with aperture coupling," IEEE Trans. Antennas and Propagation, Vol. 51, No. 4, 898-900, April 2003.
doi:10.1109/TAP.2003.811080

15. Zhang, Y. P., "Design and experiment on differentially-driven microstrip antennas," IEEE Trans. Antennas and Propagation, Vol. 55, No. 10, 2701-2708, October 2007.
doi:10.1109/TAP.2007.905832

16. Rathi, V., G. Kumar, and K. P. Ray, "Improved coupling for aperture coupled microstrip antennas," IEEE Trans. Antennas and Propagation, Vol. 44, No. 8, 1196-1198, August 1996.
doi:10.1109/8.511831

17. Choudhary, N., A. Tiwari, J. S. Saini, V. K. Saxena, and D. Bhatnagar, "Planar arrangement of modified concentric rings with defected ground for mobile and wireless communication systems," Progress In Electromagnetics Research B, Vol. 47, 161-169, 2016.
doi:10.2528/PIERM16012401

18. Islam, M. T., M. N. Shakib, and N. Misran, "Broadband E-H shaped microstrip patch antenna for wireless systems," Progress In Electromagnetics Research, Vol. 98, 163-173, 2009.
doi:10.2528/PIER09082302

19. Eldek, A. A., A. Z. Elsherbeni, and C. E. Smith, "Dual-wideband square slot antenna with a U-Shaped printed tuning stub for personal wireless communication systems," Progress In Electromagnetics Research, Vol. 53, 319-333, 2005.
doi:10.2528/PIER04103001

20. De Gennes, P. G. and J. Prost, The Physics of Liquid Crystals, 2nd Ed., Clarendon Press, 1995.