1. Miller, E. K., "Using adaptive estimation to minimize the number of samples needed to develop a radiation or scattering pattern to a specified uncertainty," ACES Journal, Vol. 17, No. 3, 176-185, 2002. Google Scholar
2. Werner, D. H. and R. J. Allard, "The simultaneous interpolation of antenna radiation patterns in both the spatial and frequency domains using model-based parameter estimation," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 3, 383-392, March 2000.
doi:10.1109/8.841899 Google Scholar
3. Martı-Canales, J. and L. P. Lighart, "Reconstruction of measured antenna patterns and related time-varying aperture fields," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 11, 3143-3147, November 2004.
doi:10.1109/TAP.2004.835235 Google Scholar
4. Tkadlec, R. and Z. Novacek, "Radiation pattern reconstruction from the near-field amplitude measurement on two planes using PSO," Radioengineering, Vol. 14, No. 4, 63-67, December 2005. Google Scholar
5. Rammal, R., M. Lalande, M. Jouvet, N. Feix, J. Andrieu, and B. Jecko, "Far-field reconstruction from transient near-field measurements using cylindrical modal development," International Journal of Antennas and Propagation, Article ID 798473, 2009. Google Scholar
6. Koh, J., A. De, T. K. Sarkar, H. Moon, W. Zhao, and M. Salazar-Palma, "Free space radiation pattern reconstruction from non-anechoic measurements using an impulse response of the environment," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 821-831, February 2012.
doi:10.1109/TAP.2011.2173117 Google Scholar
7. Wei, S.-J., X.-L. Zhang, J. Shi, and K.-F. Liao, "Sparse array microwave 3-D imaging: Compressed sensing recovery and experimental study," Progress In Electromagnetic Research, Vol. 135, 161-181, 2013.
doi:10.2528/PIER12082305 Google Scholar
8. Verdin, B. and P. Debroux, "2D and 3D far-field radiation patterns reconstruction based on compressive sensing," Progress In Electromagnetic Research M, Vol. 46, 47-56, 2016.
doi:10.2528/PIERM15110306 Google Scholar
9. Baraniuk, R. G., "Compressive sensing," IEEE Signal Processing Magazine, 118, July 2007. Google Scholar
10. Fornasier, M. and H. Rauhut, Handbook of Mathematical Methods in Imaging, Chapter 6, 187-228, Springer, 2011.
11. Fornasier, M. and H. Rauhut, Handbook of Mathematical Methods in Imaging, Vol. 1, Springer, 2010.
12. Candes, E., J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Transactions on Information Theory, Vol. 52, No. 2, 489-509, February 2006.
doi:10.1109/TIT.2005.862083 Google Scholar
13. Romberg, J., , L1qc logbarrier.m.statweb.stanford.edu/˜candes/l1magic/, October 2005, accessed: 2016-11-15.
14. ANSYS HFSS for Antenna Design Training Manual, 1st Ed., ANSYS, May 2016.
15. Fang, H., S. A. Vorobyov, H. Jiang, and O. Taheri, "Permutation meets parallel compressed sensing: How to relax restricted isometry property for 2D sparse signals," IEEE Transactions on Signal Processing, Vol. 62, No. 1, 196-210, January 2014.
doi:10.1109/TSP.2013.2284762 Google Scholar
16. Boufonos, P., M. F. Duarte, and R. G. Baraniuk, "Sparse signal reconstruction from noisy compressive measurement using cross validation," 2007 IEEE/SP 14th Workshop on Statistical Signal Processing, IEEE Signal Processing Society, IEEE, August 2007. Google Scholar