Vol. 55
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-03-08
System Electromagnetic Loss Analysis and Temperature Field Estimate of a Magnetically Suspended Motor
By
Progress In Electromagnetics Research M, Vol. 55, 51-61, 2017
Abstract
A magnetically suspended permanent-magnet motor (MSPMM) system mainly consists of magnetic bearings(MBs), a motor and a rotor assembly. This paper focuses on the system analysis of an MSPMM used for a vacuum turbo-molecular pump (TMP). To ensure a normal levitation and rotation, characteristics of electromagnetic field of MBs and motor are studied. For MSPMM, loss is the main heat source. To ensure the safe and steady operation of MSPMM, loss of the MB and motor are calculated and analyzed by finite element method (FEM). For thermal aspects, temperature field is estimated. Based on these analyses, the system performance can be predictive. Considering the poor heat dissipation conditions in a vacuum environment, this system analysis including loss and temperature field is of great value for MSPMM design.
Citation
Xiaojun Ren Yun Le Bangcheng Han , "System Electromagnetic Loss Analysis and Temperature Field Estimate of a Magnetically Suspended Motor," Progress In Electromagnetics Research M, Vol. 55, 51-61, 2017.
doi:10.2528/PIERM17010904
http://www.jpier.org/PIERM/pier.php?paper=17010904
References

1. Jiang, W., et al., "Commutation analysis of brushless DC motor and reducing commutation torque ripple in the two-phase stationary frame," IEEE Transactions on Power Electronics, Vol. 32, No. 6, 4675-4682, 2017.
doi:10.1109/TPEL.2016.2604422

2. Kim, K.-T., S.-T. Lee, and J. Hur, "Diagnosis technique using a detection coil in BLDC motors with interturn faults," IEEE Transactions on Magnetics, Vol. 50, No. 2, 7021904, 2014.

3. Schweitzer, G. and E. H. Maslen, Magnetic Bearings Theory, Design and Application to Rotating Machinery, Springer-Verlag, Berlin, 2009.

4. Lee, T. and C. Liu, "Design and analysis of a new axial-field magnetic variable gear using pole-changing permanent magnets," Progress In Electromagnetics Research, Vol. 153, 23-32, 2015.

5. Ren, X. J., Y. Le, and B. C. Han, "Asymmetric electromagnetic analysis and design of a permagnet biased axial magnetic bearings," Progress In Electromagnetics Research Symposium, 574-586, Shanghai, China, Aug. 2016.

6. Tang, J., et al., "Low eddy loss axial hybrid magnetic bearing with gimballing control ability for momentum flywheel," J. Magn. Magn. Mater, Vol. 329, 12, 2013.

7. Ren, X. J., et al., "Magnetic flux leakage modeling and optimization of a combined radial-axial hybrid magnetic bearing for DC motor," IET Electric Power Applications, 2016.

8. Fang, S. H., et al., "Analysis and design of a high-speed permanent magnet characteristic actuator using eddy current effect for high-voltage vacuum circuit breaker," IET Electric Power Applications, Vol. 10, No. 6, 268-275, 2016.
doi:10.1049/iet-epa.2015.0348

9. Han, B., et al., "Modeling and analysis of coupling performance between passive magnetic bearing and hybrid magnetic radial bearing for magnetically suspended flywheel," IEEE Trans. Magn., Vol. 49, No. 10, 5356-5370, Oct. 2013.
doi:10.1109/TMAG.2013.2263284

10. Zhang, C., K. J. Tseng, T. D. Nguyen, and G. Zhao, "Stiffness analysis and levitation force control of active magnetic bearing for a partially-self-bearing flywheel system," International Journal of Applied Electromagnetics and Mechanics, Vol. 36, 229-242, 2011.

11. Le, Y., et al., "Dynamic circuit model of a radial magnetic bearing with permanent magnet bias and laminated cores," International Journal of Applied Electromagnetics and Mechanics, Vol. 46, 43-60, 2014.

12. Han, B., Q. Xu, and Q. Yuan, "Multiobjective optimization of a combined radial-axial magnetic bearing for magnetically suspended compressor," IEEE Transactions on Industrial Electronics, Vol. 64, No. 4, 2284-2293, 2016.

13. Fang, J., C. Wang, and T. Wen, "Design and optimization of a radial hybrid magnetic bearing with separate poles for magnetically suspended inertially stabilized platform," IEEE Transactions on Magnetics, Vol. 50, No. 50, 8101011, May 2014.

14. Si, M., X. Y. Yang, S. W. Zhao, and S. Gong, "Design and analysis of a novel spoke-type permanent magnet synchronous motor," IET Electric Power Applications, Vol. 10, No. 6, 571-580, 2016.
doi:10.1049/iet-epa.2015.0432

15. Barcaro, M., T. Pradella, and I. Furlan, "Low-torque ripple design of a ferrite-assisted synchronous reluctance motor," IET Electric Power Applications, Vol. 10, No. 5, 319-329, 2016.
doi:10.1049/iet-epa.2015.0248

16. Hou, Z., J. Huang, H. Liu, T. Wang, and L. Zhao, "Quantitative broken rotor bar fault detection for closed-loop controlled induction motors," IET Electric Power Applications, Vol. 10, No. 5, 403-410, 2016.
doi:10.1049/iet-epa.2015.0440

17. Prieto, D., et al., "Multi-physic analytical model for a saturated permanent magnet assisted synchronous reluctance motor," IET Electric Power Applications, Vol. 10, No. 5, 356-367, 2016.
doi:10.1049/iet-epa.2015.0199

18. Lim, M.-S., S.-H. Chai, and J.-P. Hong, "Design and iron loss analysis of sensorless-controlled interior permanent magnet synchronous motors with concentrated winding," IET Electric Power Applications, Vol. 8, No. 9, 349-356, 2014.
doi:10.1049/iet-epa.2014.0005

19. Azari, M. N. and M. Mirsalim, "Analytic modelling of a line-start permanent-magnet motor with slotted solid rotor," IET Electric Power Applications, Vol. 8, No. 7, 278-285, 2014.
doi:10.1049/iet-epa.2014.0018

20. Huber, T., W. Peters, and J. Böcker, "A low-order thermal model for monitoring critical temperatures in permanent magnet synchronous motors," 7th IET International Conference on Power Electronics, Machines and Drives (PEMD 2014), 1-6, 2014.

21. Stipetic, S., D. Zarko, and M. Popescu, "Ultra-fast axial and radial scaling of synchronous permanent magnet machines," IET Electric Power Applications, Vol. 10, No. 7, 658-666, 2016.
doi:10.1049/iet-epa.2016.0014

22. Zhao, B., Application of Ansoft 12 in Engineering Electromagnetic Field, Water Power Press, Beijing, China, 2010 (in Chinese).

23. Wang, T., X. Ouyang, L. Li, and X. Li, "Optimization of the five phase fault tolerant motor based on Ansoft simulation," IEEE/CSAA International Conference on Aircraft Utility Systems (AUS), 1035-1039, Beijing, China, Oct. 2016, DOI: 10.1109/AUS. 2016. 7748209.

24. Aboura, F. and O. Touhami, "Integration of the hysteresis in models of asymmetric three-phase transformer: Finite-element and dynamic electromagnetic models," IET Electric Power Applications, Vol. 10, No. 7, 614-622, 2016.
doi:10.1049/iet-epa.2015.0476

25. Huang, Z. Y. and B. C. Han, "Effective approach for calculating critical speeds of high-speed permanent magnet motor rotor-shaft assemblies," IET Electric Power Applications, Vol. 9, No. 9, 628-633, 2015.
doi:10.1049/iet-epa.2014.0503

26. Han, B., Q. Xu, and S. Zheng, "Integrated radial/thrust magnetic bearing without thrust disk for a high-speed driving system," IET Electric Power Applications, Vol. 10, No. 4, 276-283, 2016.
doi:10.1049/iet-epa.2015.0335

27. Huang, Z., et al., "Mechanical stress and thermal aspects of the rotor assembly for turbo-molecular pumps," Vacuum, Vol. 129, 55-62, 2016.
doi:10.1016/j.vacuum.2016.03.026

28. Zhang, Z., L. Yu, L. Sun, L. Qian, and X. Huang, "Iron loss analysis of doubly salient brushless DC generators," IEEE Trans. Ind. Electron., Vol. 62, No. 4, 2156-2163, Apr. 2015.
doi:10.1109/TIE.2014.2349875

29. Huang, Z., J. Fang, X. Liu, and B. Han, "Loss calculation and thermal analysis of rotors supported by active magnetic bearings for high-speed permanent-magnet electrical machines," IEEE Trans. Ind. Electron., Vol. 63, No. 4, 2027-2035, Apr. 2016.