1. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-9, Apr. 6, 2001. Google Scholar
2. Eleftheriades, G. V. and K. G. Balmain, Negative-refraction Metamaterials: Fundamental Properties and Applications, J. Wiley, Hoboken, NJ, ISBN: 978-0471744757, 2005.
doi:10.1002/0471744751
3. Marques, R., F. Mart´ın, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications, John Wiley & Sons, ISBN: 978-0-471-74582-2, 2011.
4. Cui, T. J., D. Smith, and R. Liu, Metamaterials: Theory, Design, and Applications, Springer, New York, NY, ISBN: 978-1441905734, 2014.
5. Liu, R., C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband ground-plane cloak," Science, Vol. 323, 366-9, 2009. Google Scholar
6. Liu, B. and C. Ji, "Bayesian nonparametric modeling for rapid design of metamaterial microstructures," International Journal of Antennas & Propagation, Vol. 2014, 187-187, 2014. Google Scholar
7. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physical Review B, Vol. 65, 195104, 2001.
doi:10.1103/PhysRevB.65.195104 Google Scholar
8. Chen, X., T. M. Grzegorczyk, B. I. Wu, P. J. Jr, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E Statistical Nonlinear & Soft Matter Physics, Vol. 70, 811-811, 2004. Google Scholar
9. Menzel, C., C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, "Retrieving effective parameters for metamaterials at oblique incidence," Physical Review B, Vol. 77, No. 19, 195328-1-195328-8, 2008.
doi:10.1103/PhysRevB.77.195328 Google Scholar
10. Rahm, M., D. Roberts, J. Pendry, and D. Smith, "Transformation-optical design of adaptive beam bends and beam expanders," Optics Express, Vol. 16, 11555-11567, 2008.
doi:10.1364/OE.16.011555 Google Scholar
11. Rahm, M., D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations," Photonics and Nanostructures-fundamentals and Applications, Vol. 6, 87-95, 2008. Google Scholar
12. Schurig, D., J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, et al. "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628 Google Scholar
13. Koschny, T., P. Marko, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Physical Review B, Vol. 71, 5105, 2005. Google Scholar
14. Li, J. and J. Pendry, "Hiding under the carpet: A new strategy for cloaking," Physical Review Letters, Vol. 101, 203901, 2008.
doi:10.1103/PhysRevLett.101.203901 Google Scholar
15. Jiang, W. X., J. Y. Chin, Z. Li, Q. Cheng, R. Liu, and T. J. Cui, "Analytical design of conformally invisible cloaks for arbitrarily shaped objects," Physical Review E, Vol. 77, 066607, 2008. Google Scholar
16. Bilotti, F., A. Toscano, L. Vegni, and K. Aydin, "Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions," IEEE Transactions on Microwave Theory & Techniques Mtt, Vol. 55, 2865-2873, 2007.
doi:10.1109/TMTT.2007.909611 Google Scholar
17. Chen, H., L. Ran, J. Huangfu, T. M. Grzegorczyk, and J. A. Kong, "Equivalent circuit model for left-handed metamaterials," Journal of Applied Physics, Vol. 100, 024915-024915-6, 2006.
doi:10.1063/1.2219986 Google Scholar
18. Gil, I., J. Bonache, J. Garcia-Garcia, and F. Martin, "Tunable metamaterial transmission lines based on varactor-loaded split-ring resonators," IEEE Transactions on Microwave Theory & Techniques, Vol. 54, 2665-2674, 2006.
doi:10.1109/TMTT.2006.872949 Google Scholar
19. Antonini, G., "SPICE equivalent circuits of frequency-domain responses," IEEE Transactions on Electromagnetic Compatibility, Vol. 45, 502-512, 2003.
doi:10.1109/TEMC.2003.815528 Google Scholar
20. Majumdar, P., Z. Zhao, Y. Yue, C. Ji, and R. Liu, "Equivalent circuit model of cross and circular ring FSS using vector fitting," 2014 3rd Asia-Pacific Conference on Antennas and Propagation (APCAP), 1042-1045, 2014.
doi:10.1109/APCAP.2014.6992686 Google Scholar
21. Majumdar, P., Z. Zhao, Y. Yue, C. Ji, and R. Liu, "Equivalent circuit model of different configurations of loop elements using vector-fitting," PIERS Proceedings, 2395-2399, Guangzhou, Aug. 25–28, 2014. Google Scholar
22. Williams, C. K. and C. E. Rasmussen, Gaussian Processes for Machine Learning, MIT Press, ISBN 0-262-18253-X, 2006.
23. Semlyen, A. and B. Gustavsen, "Vector fitting by pole relocation for the state equation approximation of nonrational transfer matrices," Circuits, Systems and Signal Processing, Vol. 19, 549-566, 2000.
doi:10.1007/BF01271288 Google Scholar
24. Gustavsen, B. and A. Semlyen, "Rational approximation of frequency domain responses by vector fitting," IEEE Transactions on Power Delivery, Vol. 14, 1052-1061, 1999.
doi:10.1109/61.772353 Google Scholar
25. Munk, B., Frequency Selective Surfaces: Theory and Design, J. Wiley, Hoboken, NJ, ISBN 978-0- 471-37047-5, 2005.