1. Ciftci, T., B. Karaosmanoglu, and O. Ergul, "Low-cost inkjet antennas for RFID applications," 2015 Radio and Antenna Days of the Indian Ocean (RADIO), Belle Mare, 1-2, Belle Mare, Mauritius, 2015. Google Scholar
2. Kang, H., H. Park, Y. Park, M. Jung, B. C. Kim, G. Wallace, and G. Choa, "Fully roll-toroll gravure printable wireless (13.56 MHz) sensors-signage tags for smart packaging," Scientific Reports, Vol. 4, No. 5387, 2014. Google Scholar
3. Wegener, M., D. Spiehl, H. M. Sauer, F. Mikschl, X. Liu, N. Kolpin, M. Schmidt, M. P. M. Jank, E. Dorsam, and A. Roosen, "Flexographic printing of nanoparticulate tin-doped indium oxide inks on PET foils and glass substrates," Journal of Materials Science, Vol. 51, No. 9, 4588-4600, 2016.
doi:10.1007/s10853-016-9772-3 Google Scholar
4. Willmann, J., D. Stocker, and E. Dorsam, "Characteristics and evaluation criteria of substratebased manufacturing. Is roll-to-roll the best solution for printed electronics?," Organic Electronics, Vol. 17, No. 7, 1631-1640, 2014.
doi:10.1016/j.orgel.2014.04.022 Google Scholar
5. Yousef, S. and A. Mohamed, "Mass production of CNTs using CVD multi-quartz tubes," Journal of Mechanical Science and Technology, Vol. 30, No. 11, 5135-5141, 2016.
doi:10.1007/s12206-016-1031-7 Google Scholar
6. Komoda, N., M. Nogi, K. Suganuma, K. Kohno, Y. Akiyama, and K. Otsuka, "Printed silver nanowire antennas with low signal loss at high-frequency radio," Nanoscale, Vol. 4, 3148-3153, 2012.
doi:10.1039/c2nr30485f Google Scholar
7. Lu, J. D., P. J. Deng, L. H. Li, and W. W. Li, "The research on gravure printing RFID antenna," Advanced Materials Research, Vol. 1033–1034, 1142-1148, 2014.
doi:10.4028/www.scientific.net/AMR.1033-1034.1142 Google Scholar
8. Bornemann, N., H. M. Sauer, and E. Dorsam, "Gravure printed ultrathin layers of small-molecule semiconductors on glass," Journal of Imaging Science and Technology, Vol. 55, No. 4, 2011.
doi:10.2352/J.ImagingSci.Technol.2011.55.4.040201 Google Scholar
9. Spurek, J., J. Velim, M. Cupal, Z. Raida, J. Prasek, and J. Hubalek, "Slot loop antennas printed on 3D textile substrate," 21st International Conference on Microwave, Radar and Wireless Communications (MIKON), Gdansk, Poland, May 9–11, 2016. Google Scholar
10. Dokic, M., V. Radonic, A. Pletersek, U. Kavcic, V. Crnojevic-Bengin, and T. Muck, "Comparison between the characteristics of screen and flexographic printing for RFID applications," Journal of Microelectronics, Electronic Components and Materials, Vol. 45, No. 1, 3-11, 2015. Google Scholar
11. Kim, S., M. M. Tentzeris, and S. Nikolaou, "Wearable biomonitoring monopole antennas using inkjet printed electromagnetic band gap structures," 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, Mar. 26–Mar. 30, 2012. Google Scholar
12. Hassan, A., S. Ali, J. Bae, and C. H. Lee, "All printed antenna based on silver nanoparticles for 1.8 GHz applications," Applied Physics A, Vol. 122, 768, 2016.
doi:10.1007/s00339-016-0286-2 Google Scholar
13. Khonsari, Z., T. Bjorninen, M. M. Tentzeris, L. Sydanheimo, and L. Ukkonen, "2.4 GHz inkjetprinted RF energy harvester on bulk cardboard substrate," IEEE Radio and Wireless Symposium (RWS), San Diego, CA, USA, Jan. 25–Jan. 28, 2015. Google Scholar
14. Roushdy, M. M. and H. F. Hammad, "Inkjet printed wearable Hilbert monopole fractal antenna optimized for BAN systems," 33rd National Radio Science Conference (NRSC), Aswan, Egypt, 2016. Google Scholar
15. http://www.fujifilmusa.com/press/news/display news?newsID=880813.
16. Soltman, D. and V. Subramanian, "Inkjet-printed line morphologies and temperature control of the coffee ring effect," Langmuir, Vol. 24, No. 5, 2224-2231, 2008.
doi:10.1021/la7026847 Google Scholar
17. Poozesh, S., K. Saito, N. K. Akafuah, and J. Grana-Otero, "Comprehensive examination of a new mechanism to produce small droplets in drop-on-demand inkjet technology," Applied Physics A, Vol. 122, No. 110, 2016. Google Scholar
18. Albrecht, A., A. Rivadeneyra, A. Abdellah, P. Luglia, and J. F. Salmerona, "Inkjet printing and photonic sintering of silver and copper oxide nanoparticles for ultra-low-cost conductive patterns," Journal of Materials Chemistry C, Vol. 4, 3546-3554, 2016.
doi:10.1039/C6TC00628K Google Scholar
19. Sipila, E., J. Virkki, J. Wang, L. Sydanheimo, and L. Ukkonen, "Brush-painting and photonic sintering of copper oxide and silver inks on wood and cardboard substrates to form antennas for UHF RFID tags," International Journal of Antennas and Propagation, Vol. 2016, 2016. Google Scholar
20. Ten Brink, G. H., N. Foley, D. Zwaan, B. J. Kooia, and G. Palasantzas, "Roughness controlled superhydrophobicity on single nanometer length scale with metal nanoparticles," RSC Advances, Vol. 5, 28696-28702, 2015.
doi:10.1039/C5RA02348C Google Scholar
21. Van Der Pauw, L. J., "A method of measuring specific resistivity and hall effect of discs of arbitrary shape," Philips Research Reports, Vol. 13, 1-9, Feb. 1958. Google Scholar
22. Kang, J. S., H. S. Kim, J. Ryu, H. T. Hahn, S. Jang, and J. W. Joung, "Inkjet printed electronics using copper nanoparticle ink," Journal of Materials Science: Materials in Electronics, Vol. 21, No. 11, 1213-1220, 2010.
doi:10.1007/s10854-009-0049-3 Google Scholar
23. Zenou, M., O. Ermak, A. Saar, and Z. Kotler, "Laser sintering of copper nanoparticles," Journal of Physics D: Applied Physics, Vol. 47, No. 2, 2013. Google Scholar
24. Chen, C. N., C. P. Chen, T.-Y. Dong, T. C. Chang, M. C. Chen, H. T. Chen, and I. G. Chen, "Using nanoparticles as direct-injection printing ink to fabricate conductive silver features on a transparent flexible PET substrate at room temperature," Acta Materialia, Vol. 60, No. 16, 5914-5924, 2012.
doi:10.1016/j.actamat.2012.07.034 Google Scholar
25. Ahmed, S., F. A. Tahir, A. Shamim, and H. M. Cheema, "A compact Kapton-based inkjet-printed multiband antenna for flexible wireless devices," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1802-1805, 2015.
doi:10.1109/LAWP.2015.2424681 Google Scholar
26. Wei, Y., Y. Li, R. Torah, and J. Tudor, "Laser curing of screen and inkjet printed conductors on flexible substrates," Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), Montpellier, France, Apr. 27–30, 2015. Google Scholar
27. Elsheakh, D. M. and M. F. Iskander, "Circularly polarized triband printed Quasi-Yagi antenna for millimeter-wave applications," International Journal of Antennas and Propagation, Vol. 2015, 2015. Google Scholar
28. Mehdipour, A., I. D. Rosca, A.-R. Sebak, C. W. Trueman, and S. V. Hoa, "Carbon nanotube composite for wideband millimeter-wave antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 10, 3572-3578, 2011.
doi:10.1109/TAP.2011.2163755 Google Scholar