1. Qin, J. and O. M. Ramahi, "Ultra-wideband mitigation of simultaneous switching noise using novel planar electromagnetic bandgap structures," IEEE Microwave and Wireless Components Lette, Vol. 16, No. 9, 1531-1309, 2006. Google Scholar
2. Kwon, J. H., D. U. Sim, S. I. Kwak, and J. G. Yook, "Novel electromagnetic bandgap array structure on power distribution network for suppressing simultaneous switching noise and minimizing effects on high-speed signals ," IEEE Trans. Electromagn. Compat., Vol. 52, No. 2, 365-372, 2010.
doi:10.1109/TEMC.2010.2045894 Google Scholar
3. Kim, S.-G., H. Kim, H.-D. Kang, and J.-G. Yook, "Signal integrity enhanced ebg structure with a ground reinforced trace," IEEE Transactions on Electronics Packing Manufacture, Vol. 55, No. 2, 373-380, 2010. Google Scholar
4. Zhang, M. S., Y. S. Li, C. Jia, et al. "A power plane with wideband SSN suppression using a multi-via electromagnetic bandgap structure," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 4, 307-309, 2007.
doi:10.1109/LMWC.2007.892992 Google Scholar
5. Zhu, H., J. Li, and J. Mao, "Ultra-sideband suppression of SSN using localized topology with CSRRs and embedded capacitance in high-speed circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 2, 764-772, 2013.
doi:10.1109/TMTT.2012.2231695 Google Scholar
6. De Paulis, F., M. Cracraft, C. Olivieri, S. Connor, A. Orlandi, and B. Archambeault, "EBG-based common-mode stripline filters: Experimental investigation on interlayer crosstalk," IEEE Trans. Electromagn. Compat., Vol. PP, No. 99, 19, Jul. 2015. Google Scholar
7. Anand, A., K. Shambavi, and Z. C. Alex, "Design Of UWB band pass filter with inter digitalcoupled lines and circular shaped EBG structure," International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE), 1-4, Mar. 6-8, 2014. Google Scholar
8. Gujral, M., J. L.-W. Li, T. Yuan, and C.-W. Qiu, "Bandwidth improvement of microstrip antenna array using dummy EBG pattern on feedline," Progress In Electromagnetics Research, Vol. 127, 79-92, 2012.
doi:10.2528/PIER12022807 Google Scholar
9. Kim, S.-H., T. T. Nguyen, and J.-H. Jang, "Reflection characteristics of 1-D EBG ground plane and its application to a planar dipole antenna," Progress In Electromagnetics Research, Vol. 120, 51-66, 2011.
doi:10.2528/PIER11062909 Google Scholar
10. Wu, T. L., S. T. Chert, J. N. Huang, and Y. H. Lin, "Numerical and experimental investigation of radiation caused by the switching noise on the partitioned dc reference planes of high speed digital PCB," IEEE Trans. Electromagn. Compat., Vol. 46, No. 1, 33-45, Feb. 2004.
doi:10.1109/TEMC.2004.823680 Google Scholar
11. Wu, T. L., H. H. Chuang, and T. K. Wang, "Overview of power integrity solutions on package and PCB: Decoupling and EBG isolation," IEEE Trans. Electromagn. Compat., Vol. 52, No. 2, 346-356, May 2010.
doi:10.1109/TEMC.2009.2039575 Google Scholar
12. Zhu, H.-R. and J.-F. Mao, "Localized planar EBG structure of CSRR for ultrawideband SSN mitigation and signal integrity improvement in mixed-signal systems," IEEE Trans. Compon. Packag., Manuf. Technol., Vol. 3, No. 12, 2092-2100, Dec. 2013.
doi:10.1109/TCPMT.2013.2272788 Google Scholar
13. Yang, F.-R., K.-P. Ma, Y. Qian, and T. Itoh, "A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 8, 1509-1514, Aug. 1999.
doi:10.1109/22.780402 Google Scholar
14. Li, L., B. Li, H.-H. Liu, and C.-H. Liang, "Locally resonant cavity cell model for electromagnetic bandgap structures," IEEE Trans. Antennas Propag., Vol. 54, No. 1, 90-100, Jan. 2006.
doi:10.1109/TAP.2005.861532 Google Scholar
15. Rao, P. H. and M. Swaminathan, "A novel compact electromagnetic bandgap structure in power plane for wideband noise suppression and low radiation," IEEE Trans. Electromagn. Compat., Vol. 53, No. 4, 996-1004, Nov. 2011.
doi:10.1109/TEMC.2011.2156408 Google Scholar
16. Shi, Y., W. Tang, S. Liu, X. Rao, and Y. L. Chow, "Ultra-wideband suppression of power/ground noise in high-speed circuits using a novel electromagnetic bandgap power plane," IEEE Trans. Compon. Packag., Manuf. Technol., Vol. 3, No. 4, 653-660, Apr. 2013.
doi:10.1109/TCPMT.2012.2235529 Google Scholar
17. Yuan, H., L. Fang, C. Li, S. Bo, and W. Guan, "Signal integrity analysis of localized new EBG structure for ultra-wideband simultaneous switching noise suppression," 2014 3rd Asia-Pacific Conference on Antennas and Propagation (APCAP), 1444-1446, Jul. 26-29, 2014. Google Scholar
18. Bogatin, E., Signal and Power Integrity --- Simplified, 2nd Ed., Pretince Hall, NJ, 2009.
19. Kim, K. H. and J. E. Schutt-Aine, "Analysis and modeling of hybrid planar-type electromagnetic-bandgap structures and feasibility study on power distribution network applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 1, 178-186, Jan. 2008.
doi:10.1109/TMTT.2007.912199 Google Scholar
20. Kim, K. H. and J. E. Schutt-Aine, "Design of EBG power distribution networks with VHF-band cutoff frequency and small unit cell size for mixed-signal systems," EEE Microwave and Wireless Components Letters, Vol. 17, No. 7, Jul. 2007. Google Scholar
21. De Paulis, F., L. Raimondo, and A. Orlandi, "IR-drop analysis and thermal assessment of planar electromagnetic bandgap structures for power integrity applications," IEEE Trans. Adv. Packag., Vol. 33, No. 3, 617-622, Aug. 2010.
doi:10.1109/TADVP.2009.2033572 Google Scholar
22. Kim, T. H., D. Chung, E. Engin, W. Yun, Y. Toyota, and M. Swaminathan, " A novel synthesis method for designing electromagnetic bandgap (EBG) structures in packaged mixed signal systems," Proc. 56th Electron. Compon. Technol. Conf., 1645-1651, May 30-Jun. 2, 2006. Google Scholar