Vol. 75
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-06-15
Compact 2×1 MIMO Antenna System for LTE Band
By
Progress In Electromagnetics Research C, Vol. 75, 63-73, 2017
Abstract
A compact 2×1 multiple input multiple output (MIMO) antenna system is designed to operate in the LTE band 40 (2.3-2.4) GHz. The proposed antenna consists of two circular patches fed using microstrip line. The antenna was initially designed to resonate at 5 GHz. Size reduction of 55.17% compared to conventional patch antenna is obtained after the inclusion of circular complementary split ring resonator (CSRR) in the ground plane. The resonating frequency was shifted to 2.34 GHz, there by the board size is compact (50×25×1.6 mm3). The designed antenna covers a bandwidth of 2.3 to 2.374 GHz with a maximum return loss of -27 dB at 2.34 GHz and isolation of -33.5 dB between the ports. The simulated correlation coefficient is approximately zero, and the total active reflection coefficient is 0.142 at the resonating frequency which are within the acceptable limits. The realized gain for the antenna is -8.9 dB.
Citation
Andrews Christina Malathi, and Dhanasingh Thiripurasundari, "Compact 2×1 MIMO Antenna System for LTE Band," Progress In Electromagnetics Research C, Vol. 75, 63-73, 2017.
doi:10.2528/PIERC17022203
References

1. Garg, V. K., Wireless Communications and Networking, Elsevier-Morgan Kaufmann, Waltham, MA, 2007.

2. Larmo, A., et al. "The LTE link-layer design," IEEE Commun. Mag., Vol. 47, No. 4, 52-59, Apr. 2009.
doi:10.1109/MCOM.2009.4907407        Google Scholar

3. Zhang, Y. and B. Niu, "Compact Ultrawideband (UWB) slot antenna with wideband and high isolation for MIMO applications," Progress In Electromagnetics Research C, Vol. 54, 9-16, 2014.
doi:10.2528/PIERC14072304        Google Scholar

4. Schaubert, D. and K. Yngvesson, "Experimental study of a microstrip array on high permittivity substrate," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 1, 92-97, 1986.
doi:10.1109/TAP.1986.1143723        Google Scholar

5. Herscovici, N., M. F. Osorio, and C. Peixeiro, "Miniaturization of rectangular microstrip patches using genetic algorithms," IEEE Antennas and Wireless Propagation Letters, Vol. 1, No. 1, 94-97, 2002.
doi:10.1109/LAWP.2002.805128        Google Scholar

6. Bokhari, S. A., et al. "A small microstrip patch antenna with a convenient tuning option," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 11, 1521-1528, 1996.
doi:10.1109/8.542077        Google Scholar

7. Latif, S. I., L. Shafai, and C. Shafai, "An engineered conductor for gain and efficiency improvement of miniaturized microstrip antennas," IEEE Antennas and Propagation Magazine, Vol. 55, No. 2, 77-90, 2013.
doi:10.1109/MAP.2013.6529319        Google Scholar

8. Chow, Y. L., K. L. Wan, and T. K. Sarkar, "Patch antenna miniaturizing with a shorting pin near the feed probe-its physical mechanism and the design on Smith Chart," 2001 Asia-Pacific Microwave Conference, APMC 2001, Vol. 3, IEEE, 2001.        Google Scholar

9. Kuo, J.-S. and K.-L. Wong, "A compact microstrip antenna with meandering slots in the ground plane," Microwave and Optical Technology Letters, Vol. 29, No. 2, 95-97, 2001.
doi:10.1002/mop.1095        Google Scholar

10. Huang, J., "The finite ground plane effect on the microstrip antenna radiation patterns," IEEE Transactions on Antennas and Propagation, Vol. 31, No. 4, 649-653, 1983.
doi:10.1109/TAP.1983.1143108        Google Scholar

11. Liu, J., W.-Y. Yin, and S. He, "A new defected ground structure and its application for miniaturized switchable antenna," Progress In Electromagnetics Research, Vol. 107, 115-128, 2010.
doi:10.2528/PIER10050904        Google Scholar

12. Khan, M. U., M. S. Sharawi, and R. Mittra, "Microstrip patch antenna miniaturisation techniques: A review," IET Microwaves, Antennas & Propagation, Vol. 9, No. 9, 913-922, Jun. 2015.
doi:10.1049/iet-map.2014.0602        Google Scholar

13. Dong, Y., H. Toyao, and T. Itoh, "Design and characterization of miniaturized patch antenna loaded with complementary split ring resonators," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 772-785, Feb. 2012.
doi:10.1109/TAP.2011.2173120        Google Scholar

14. Ouedraogo, R. O., E. J. Rothwell, A. R. Diaz, K. Fuchi, and A. Temme, "Miniaturization of patch antennas using a metamaterial-inspired technique," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2175-2182, May 2012.
doi:10.1109/TAP.2012.2189699        Google Scholar

15. Khan, M. U. and M. S. Sharawi, "A compact 8-element MIMO antenna system for 802.11ac WLAN applications," International Workshop on Antenna Technology, (IWAT), 91-94, 2013.        Google Scholar

16. Asieh, H., J. Nourinia, and C. Ghobadi, "Mutual coupling reduction between very closely spaced patch antennas using low-profile Folded Split-Ring Resonators (FSRRs)," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 862-865, IEEE, 2011.        Google Scholar

17. Saraswat, R. K. and M. Kumar, "Miniaturized slotted ground UWB antenna loaded with metamaterial for WLAN and WiMAX applications," Progress In Electromagnetics Research B, Vol. 65, 65-80, 2016.
doi:10.2528/PIERB15112703        Google Scholar

18. Liu, L., S. W. Cheung, and T. Yuk, "Compact MIMO antenna for portable UWB applications with band-notched characteristic," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 5, 1917-1924, 2015.
doi:10.1109/TAP.2015.2406892        Google Scholar

19. Xia, R., S. Qu, Q. Jiang, P. Li, and Z. Nie, "An efficient decoupling feeding network for twoelement microstrip antenna array," IEEE Transactions on Antennas and Wireless Propagation Letters, Vol. 14, 871-874, 2015.
doi:10.1109/LAWP.2014.2380786        Google Scholar

20. Lin, K.-C., C.-H. Wu, C.-H. Lai, and T.-G. Ma, "Novel dual-band decoupling network for twoelement closely spaced array using synthesized microstrip lines," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 11, 5118-5128, 2012.
doi:10.1109/TAP.2012.2207687        Google Scholar

21. Chen, W.-J. and H.-H. Lin, "LTE700/WWAN MIMO antenna system integrated with decoupling structure for isolation improvement," Antennas and Propagation Society International Symposium (APSURSI), 689-690, IEEE, 2014.        Google Scholar

22. Wang, H., D. G. Fang, and X. L. Wang, "Mutual coupling reduction between two microstrip patch antennas by using the parasitic elements," Asia-Pacific Microwave Conference, APMC 2008, 1-4, IEEE, 2008.        Google Scholar

23. Margaret, D. H., M. R. Subasree, S. Susithra, S. S. Keerthika, and B. Manimegalai, "Mutual coupling reduction in MIMO antenna system using EBG structures," International Conference on Signal Processing and Communications (SPCOM), 1-5, IEEE, 2012.        Google Scholar

24. Islam, M. T. and M. S. Alam, "Compact EBG structure for alleviating mutual coupling between patch antenna array elements," Progress In Electromagnetics Research, Vol. 137, 425-438, 2013.
doi:10.2528/PIER12121205        Google Scholar

25. Yu, Y., et al. "Dual-frequency two-element antenna array with suppressed mutual coupling," International Journal of Antennas and Propagation, 1-6, 2014.        Google Scholar

26. Wu, Y.-T. and Q.-X. Chu, "Dual-band multiple input multiple output antenna with slitted ground," Microwaves, Antennas & Propagation, IET 8.13, 1007-1013, 2014.        Google Scholar

27. Su, S.-W., C.-T. Lee, and F.-S. Chang, "Printed MIMO-antenna system using neutralization-line technique for wireless USB-dongle applications," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 456-463, 2012.
doi:10.1109/TAP.2011.2173450        Google Scholar

28. Zhang, S. and G. Pedersen, "Mutual coupling reduction for UWB MIMO antennas with a wideband neutralization line," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 166-169, 2016.
doi:10.1109/LAWP.2015.2435992        Google Scholar

29. Ren, Y.-H., et al. "A wideband dual-polarized printed antenna based on complementary split-ring resonators," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 410-413, 2015.
doi:10.1109/LAWP.2014.2367126        Google Scholar

30. Baena, J. D., J. Bonache, F. Martin, R. Marques, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia, I. Gil, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary splitring resonators coupled to planar transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1451-1461, Apr. 2005.
doi:10.1109/TMTT.2005.845211        Google Scholar

31. Wahid, A., M. Sreenivasan, and P. H. Rao, "CSRR loaded microstrip array antenna with low sidelobe level," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1169-1171, 2015.
doi:10.1109/LAWP.2015.2396084        Google Scholar

32. Cheng, X., D. E. Senior, C. Kim, and Y. Yoon, "A compact omnidirectional self-packaged patch antenna with complementary split-ring resonator loading for wireless endoscope applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1532-1535, 2011.
doi:10.1109/LAWP.2011.2181315        Google Scholar

33. Ziolkowski, R. W., "Design, fabrication and testing of double negative metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 7, 1516-1529, Jul. 2003.
doi:10.1109/TAP.2003.813622        Google Scholar

34. Rothwell, E. J., et al. "Analysis of the Nicolson-Ross-Weir Method for characterizing the electromagnetic properties of engineered materials," Progress In Electromagnetics Research, Vol. 157, 31-47, 2016.
doi:10.2528/PIER16071706        Google Scholar

35. Wirgin, A., "Retrieval of the frequency-dependent effective permeability and permittivity of the inhomogeneous material in a layer," Progress In Electromagnetics Research B, Vol. 70, 131-147, 2016.
doi:10.2528/PIERB16080903        Google Scholar

36. Luo, C.-M., J.-S. Hong, and L.-L. Zhong, "Isolation enhancement of a very compact UWBMIMO slot antenna with two defected ground structures," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 2, 1766-1769, Apr. 2015.        Google Scholar

37. Sharawi, M. S., M. U. Khan, A. B. Numan, and D. N. Aloi, "A CSRR loaded MIMO antenna system for ISM band operation," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 8, 4265-4274, Aug. 2013.
doi:10.1109/TAP.2013.2263214        Google Scholar

38. Choukiker, Y. K., S. K. Sharma, and S. K. Behera, "Hybrid fractal shape planar monopole antenna covering multiband wireless communications with MIMO implementation for handheld mobile devices," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 3, 1483-1488, Mar. 2014.
doi:10.1109/TAP.2013.2295213        Google Scholar