1. Sun, Z. and I. F. Akyildiz, "Magnetic induction communications for wireless underground sensor networks," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2426-2435, 2010.
doi:10.1109/TAP.2010.2048858 Google Scholar
2. Sun, Z., P. Wang, M. C. Vuran, M. A. Al-Rodhaan, A. M. Al-Dhelaan, and I. F. Akyildiz, "Misepipe: Magnetic induction-based wireless sensor networks for underground pipeline monitoring," Ad Hoc Networks Journal, Vol. 9, No. 3, 218-227, Elsevier, 2011.
doi:10.1016/j.adhoc.2010.10.006 Google Scholar
3. Tan, X. and Z. Sun, "An optimal leakage detection strategy for underground pipelines using magnetic induction-based sensor networks," International Conference on Wireless Algorithms, Systems, and Applications, 414-425, Springer, 2013.
doi:10.1007/978-3-642-39701-1_34 Google Scholar
4. Tariq, A. K., A. T. Ziyad, and A. O. Abdullah, "Wireless sensor networks for leakage detection in underground pipelines: A survey," Procedia Computer Science, Vol. 21, 491-498, 2013. Google Scholar
5. Sun, Z. and B. Zhu, "Channel and energy analysis on magnetic induction-based wireless sensor networks in oil reservoirs," IEEE International Conference on Communications (ICC), 1748-1752, 2013. Google Scholar
6. Agbinya, J. I., Principles of Inductive Near Field Communications for Internet of Things, River Publishers, Denmark, 2011, ISBN: 978-87-92329-52-3.
7. Sun, Z. and I. F. Akyildiz, "Underground wireless communications using magnetic induction," Proc. IEEE International Conference on Communications (ICC), 1-5, 2009. Google Scholar
8. Akyildiz, I. F. and E. P. Stuntebeck, "Wireless underground sensor networks: Research challenges," Ad Hoc Networks Journal, Vol. 4, 669-686, Elsevier, 2006. Google Scholar
9. Li, L., M. C. Vuran, and I. F. Akyildiz, "Characteristics of underground channel for wireless underground sensor network," Proc. Med-Hoc Net, Corfu, Greece, Jun. 2007. Google Scholar
10. Agbinya, J. I., "Investigation of near field inductive communication system models, channels and experiments," Progress In Electromagnetics Research B, Vol. 49, 129-153, 2013.
doi:10.2528/PIERB12120512 Google Scholar
11. Agbinya, J. I., N. Selvaraj, A. Ollett, S. Ibos, Y. Ooi-Sanchez, M. Brennan, and Z. Chaczko, "Characteristics of the magnetic bubble ‘Cone of Silence’ in near-field magnetic induction communications terminals," Journal of Battlefield Technology, Vol. 13, No. 1, 21-25, Mar. 2010. Google Scholar
12. Sun, Z. and I. F. Akyildiz, "Deployment algorithms for wireless underground sensor networks using magnetic induction," Global Telecommunications Conference (GLOBECOM), 1-5, IEEE, 2010. Google Scholar
13. Domingo, M., "Magnetic induction for underwater wireless communication networks," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 6, 2929-2939, 2012.
doi:10.1109/TAP.2012.2194670 Google Scholar
14. Masihpour, M., D. Franklin, and M. Abolhasan, "Multiplehop relay techniques for communication range extension in near-field magnetic induction communication systems," Journal of Networks, Vol. 8, No. 5, 2013.
doi:10.4304/jnw.8.5.999-1011 Google Scholar
15. Akyildiz, I., Z. Sun, and M. Vuran, "Signal propagation techniques for wireless underground communication networks," Physical Communication, Vol. 2, No. 3, 167-183, 2009.
doi:10.1016/j.phycom.2009.03.004 Google Scholar
16. Sun, Z. and I. Akyildiz, "Optimal deployment for magnetic induction-based wireless networks in challenged environments," IEEE Transactions on Wireless Communications, Vol. 12, No. 3, 996-1005, 2013.
doi:10.1109/TWC.2013.011713.111896 Google Scholar
17. Kisseleff, S., I. Akyildiz, and W. Gerstacker, "Throughput of the magnetic induction based wireless underground sensor networks: Key optimization techniques," IEEE Transactions on Communications, Vol. 62, No. 12, 4426-4439, 2014.
doi:10.1109/TCOMM.2014.2367030 Google Scholar
18. Akyildiz, I. F., P. Wang, and Z. Sun, "Realizing underwater communication through magnetic induction," IEEE Communications Magazine, Vol. 53, No. 11, 42-48, 2015.
doi:10.1109/MCOM.2015.7321970 Google Scholar
19. Coillot, C., J. Moutoussamy, R. Lebourgeois, S. Ruocco, and G. Chanteur, "Principle and performance of a dual-band search coil magnetometer: A new instrument to investigate fluctuating magnetic fields in space," IEEE Sensors J., Vol. 10, No. 2, 255-260, 2010.
doi:10.1109/JSEN.2009.2030977 Google Scholar
20. Grosz, A., E. Paperno, S. Amrusi, and B. Zadov, "A three-axial search coil magnetometer optimized for small size, low power, and low frequencies," IEEE Sensors J., Vol. 11, No. 4, 1088-1094, 2011.
doi:10.1109/JSEN.2010.2079929 Google Scholar
21. Lukoschus, D., "Optimization theory for induction-coil magnetometers at higher frequencies," IEEE Transactions on Geoscience Electronics, Vol. 17, No. 3, 56-63, 1979.
doi:10.1109/TGE.1979.294613 Google Scholar
22. Grosz, A. and E. Paperno, "Analytical optimization of low-frequency search coil magnetometers," IEEE Sensors J., Vol. 12, No. 8, 2719-2723, 2012.
doi:10.1109/JSEN.2012.2202179 Google Scholar
23. Cavoit, C., "Closed loop applied to magnetic measurements in the range 1 of 0.1–50 MHz," Rev. Sci. Instrum., Vol. 77, No. 6, 2006, http://dx.doi.org/10.1063/1.2214693.
doi:10.1063/1.2214693 Google Scholar
24. Tal, N., Y. Morag, and Y. Levron, "Increasing the sensitivity of search coil magnetometer by capacitive compensation," IEEE Sensors J., Vol. 16, No. 12, 4671-4672, 2016.
doi:10.1109/JSEN.2016.2550604 Google Scholar
25. Nguyen, H., J. I. Agbinya, and J. Devlin, "Channel characterisation and link budget of MIMO configuration in near field magnetic communication," Int. J. Electron. Telecommun., Vol. 59, No. 3, 255-262, Aug. 2013.
doi:10.2478/eletel-2013-0030 Google Scholar
26. Gottula, R. B., "Discrete-time implementation antenna design and MIMO for near-field magnetic induction communications,", 2012, http://hdl.lib.byu.edu/1877/etd5440. Google Scholar
27. Kim, H. J., J. Park, K. S. Oh, J. P. Choi, J. E. Jang, and J. W. Choi, "Near-field magnetic induction MIMO communication using heterogeneous multiplepole loop antenna array for higher data rate transmission," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 1952-1962, 2016.
doi:10.1109/TAP.2016.2539371 Google Scholar
28. Yenchek, M. R., G. T. Homce, N. W. Damiano, and J. R. Srednicki, "NIOSH-sponsored research in through-the-Earth communications for mines: A status report," IEEE Transactions on Industry Applications, Vol. 48, No. 5, 1700-1707, 2012.
doi:10.1109/TIA.2012.2209853 Google Scholar
29. Sarris, I. and A. R. Nix, "Design and performance assessment of high-capacity MIMO architectures in the presence of a line-of-sight component," IEEE Transactions on Vehicular Technology, Vol. 56, No. 4, 2194-2202, 2007.
doi:10.1109/TVT.2007.897240 Google Scholar
30. Yu, K., M. Bengtsson, B. Ottersten, and M. Beach, "Narrowband MIMO channel modeling for LOS indoor scenarios," Proc. XXVIIth Trienn. Gen. Assem. Int. URSI, Aug. 2002. Google Scholar
31. Cottatellucci, L. and M. Debbah, "On the capacity of MIMO rice channels," Proc. 42nd Allerton Conf., 1506-1516, 2004. Google Scholar
32. Sakaguchi, K., H. Y. E. Chua, and K. Araki, "MIMO channel capacity in an indoor line-ofsight (LOS) environment," IEEE Transactions on Communications, Vol. E88-B, No. 7, 3010-3019, Jul. 2005.
doi:10.1093/ietcom/e88-b.7.3010 Google Scholar
33. Agbinya, J. I. and M. Masihpour, "Power equations and capacity performance of magnetic induction communication systems," Wireless Pers. Commun., Vol. 64, 831-845, 2012.
doi:10.1007/s11277-011-0222-x Google Scholar
34. Elliot, R. S., "Electromagnetics in free space," Electromagnetics, Ch. 5, 314, McGraw-Hill, 1966. Google Scholar
35. Conway, J. T., "Inductance calculations for noncoaxial coils using Bessel functions," IEEE Trans. Mag., Vol. 43, No. 3, 1023-1034, 2007.
doi:10.1109/TMAG.2006.888565 Google Scholar
36. Conway, J. T., "Mutual inductance for an explicitly finite number of turns," Progress In Electromagnetics Research B, Vol. 28, 273-287, 2011.
doi:10.2528/PIERB10110103 Google Scholar