1. Veselago, V., "Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
2. Pendry, J., A. Holden, W. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, No. 25, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773 Google Scholar
3. Pendry, J., A. Holden, D. Robbins, and W. Stewart, "Low frequency plasmons in thin-wire structures," Journal of Physics: Condensed Matter, Vol. 10, 4785, 1998.
doi:10.1088/0953-8984/10/22/007 Google Scholar
4. Pendry, J., A. Holden, D. Robbins, and W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002 Google Scholar
5. Belov, P. A., C. R. Simovski, and P. Ikonen, "Canalization of subwavelength images by electromagnetic crystals," Phys. Rev. B, Vol. 71, 193105, May 2005.
doi:10.1103/PhysRevB.71.193105 Google Scholar
6. Belov, P. A. and M. G. Silveirinha, "Resolution of subwavelength transmission devices formed by a wire medium," Phys. Rev. E, Vol. 73, 056607, May 2006.
doi:10.1103/PhysRevE.73.056607 Google Scholar
7. Simovski, C. R., A. J. Viitanen, and S. A. Tretyakov, "Resonator mode in chains of silver spheres and its possible application," Phys. Rev. E, Vol. 72, 066606, Dec. 2005.
doi:10.1103/PhysRevE.72.066606 Google Scholar
8. Salandrino, A. and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Phys. Rev. B, Vol. 74, 075103, Aug. 2006.
doi:10.1103/PhysRevB.74.075103 Google Scholar
9. Jacob, Z., L. V. Alekseyev, and E. Narimanov, "Optical hyperlens: Far-field imaging beyond the diffraction limit," Optics Express, Vol. 14, No. 18, 8247-8256, 2006.
doi:10.1364/OE.14.008247 Google Scholar
10. Liu, Z., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub diffraction-limited objects," Science, Vol. 315, 1686, Mar. 2007.
doi:10.1126/science.1137368 Google Scholar
11. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of E and p," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, Jan. 1967.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
12. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, 3966-3969, Oct. 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
13. Anantha Ramakrishna, S., et al. "Plasmonic interaction of visible light with gold nanoscale checkerboards," Physical Review B, Vol. 84, 245424, 2011.
doi:10.1103/PhysRevB.84.245424 Google Scholar
14. Iyer, G. V. Eleftheriades, "Negative refractive index metamaterials supporting 2-D waves," IEEE MZ7’-S International Microwave Symposium Digest, Vol. 2, 1067-1070, Seattle, WA, Jun. 2–7, 2002. Google Scholar
15. Naoui, S., L. Latrach, and A. Gharsallah, "Metamaterials dipole antenna by using split ring resonators for RFID technology," Wiley Microwave Optical Technology Letters, Vol. 56, 2899-2903, 2014, DOI 10.1002/mop.28731.
doi:10.1002/mop.28731 Google Scholar
16. Guenneau, S. and B. Gralak, "Une optique classique sens dessus dessous," Les Dossiers De La Recherche, Vol. 38, 32, 2010. Google Scholar
17. Liu, Z., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying subdiffraction- limited objects," Science, Vol. 315, 1686, Mar. 2007.
doi:10.1126/science.1137368 Google Scholar
18. Guenneau, S., et al. "The colors of cloaks," Journal of Optics, Vol. 13, 024014, 2011.
doi:10.1088/2040-8978/13/2/024014 Google Scholar
19. Azizi, M. K., L. Latrach, N. Raveu, A. Gharsallah, and H. Baudrand, "A new apporoach of almost periodic lumped elements circuits by an iterative method using auxiliary sources," American Journal of Applied Sciences, Vol. 10, No. 11, 1457-1472, 2013, ISSN: 1546-9239.
doi:10.3844/ajassp.2013.1457.1472 Google Scholar
20. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, Nov. 1999.
doi:10.1109/22.798002 Google Scholar
21. Iyer, A. K. and G. V. Eleftheriades, "Negative refractive index metamaterials supporting 2-D waves," IEEE MZ7’-S International Microwave Symposium Digest, Vol. 2, 1067-1070, Seattle, WA, Jun. 2–7, 2002. Google Scholar
22. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, 3966-3969, Oct. 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
23. Iyer, A. K., P. C. Kremer, and G. V. Eleftheriades, "Experimental and theoretical verification of focusing in a large, periodically loaded transmission line negative refractive index metamaterial," Opt. Express, Vol. 11, 696-708, Apr. 2003.
doi:10.1364/OE.11.000696 Google Scholar
24. Iyer, A. K., A. Grbic, and G. V. Eleftheriades, "Sub-wavelength focusing in loaded transmission line negative refractive index metamaterials," IEEE MTTS International Microwave Symposium Digest, 199-202, Philadelphia, PA, Jun. 8–13, 2003. Google Scholar
25. Azizi, M. K., H. Baudrand, T. Elbellili, and A. Gharsallah, "Almost periodic lumped elements structure modeling using iterative method: Application to photonic jets and planar lenses," Progress In Electromagnetics Research M, Vol. 55, 121-132, 2017.
doi:10.2528/PIERM16121906 Google Scholar