1. Pendry, J. B., "Playing tricks with light," Science, Vol. 285, 1687, 1999.
doi:10.1126/science.285.5434.1687 Google Scholar
2. Politano, A., "Influence of structural and electronic properties on the collective excitations of Ag/Cu(111)," Plasmonics, Vol. 7, No. 1, 131-136, 2012.
doi:10.1007/s11468-011-9285-5 Google Scholar
3. Politano, A., "Low-energy collective electronic mode at a noble metal interface," Plasmonics, Vol. 8, No. 2, 357-360, 2013.
doi:10.1007/s11468-012-9397-6 Google Scholar
4. Politano, A., V. Formoso, and G. Chiarello, "Dispersion and damping of gold surface plasmon," Plasmonics, Vol. 3, No. 4, 165, 2008.
doi:10.1007/s11468-008-9070-2 Google Scholar
5. Politano, A., V. Formoso, and G. Chiarello, "Collective electronic excitations in thin Ag films on Ni(111)," Plasmonics, Vol. 8, No. 4, 1683-1690, 2013.
doi:10.1007/s11468-013-9587-x Google Scholar
6. King, M. D., S. Khadka, G. A. Craig, and M. D. Mason, "Effect of local heating on the SERS efficiency of optically trapped prismatic nanoparticles," The Journal of Physical Chemistry C, Vol. 112, No. 31, 11751-11757, 2008.
doi:10.1021/jp803219x Google Scholar
7. Politano, A. and G. Chiarello, "The influence of electron confinement, quantum size effects, and film morphology on the dispersion and the damping of plasmonic modes in Ag and Au thin films," Prog. Surf. Sci., Vol. 90, No. 2, 144-193, 2015.
doi:10.1016/j.progsurf.2014.12.002 Google Scholar
8. Haynes, C. L., A. D. McFarland, and R. P. Van Duyne, "Surface-enhanced raman spectroscopy," Anal. Chem., Vol. 77, No. 17, 338A-346A, 2005.
doi:10.1021/ac053456d Google Scholar
9. Politano, A., A. Cupolillo, G. Di Profio, H. A. Arafat, G. Chiarello, and E. Curcio, "When plasmonics meets membrane technology," Journal of Physics: Condensed Matter, Vol. 28, No. 36, 363003, 2016.
doi:10.1088/0953-8984/28/36/363003 Google Scholar
10. Politano, A., P. Argurio, G. Di Profio, V. Sanna, A. Cupolillo, S. Chakraborty, H. A. Arafat, and E. Curcio, "Photothermal membrane distillation for seawater desalination," Advanced Materials, Vol. 29, No. 2, 1603504, 2017.
doi:10.1002/adma.201603504 Google Scholar
11. Harmsen, S., R. Huang, M. A. Wall, H. Karabeber, J. M. Samii, M. Spaliviero, J. R. White, S. Monette, R. O’Connor, K. L. Pitter, S. A. Sastra, M. Saborowski, E. C. Holland, S. Singer, K. P. Olive, S. W. Lowe, R. G. Blasberg, and M. F. Kircher, "Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging," Science Translational Medicine, Vol. 7, No. 271, 271ra7-271ra7, 2015.
doi:10.1126/scitranslmed.3010633 Google Scholar
12. Krenn, J. R., A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett., Vol. 82, 2590, 1999.
doi:10.1103/PhysRevLett.82.2590 Google Scholar
13. Krenn, J. R., B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Non-diffraction limited light transport by gold nanowires," Europhys. Lett., Vol. 60, No. 5, 663-669, 2001.
doi:10.1209/epl/i2002-00360-9 Google Scholar
14. Lamprecht, B., J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett., Vol. 79, No. 1, 513, 2001.
doi:10.1063/1.1380236 Google Scholar
15. Maier, S. A., P. G. Kik, H. A. Atwater, S.Meltzer, E.Harel, B. E. Koel, and A. A. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nature Materials, Vol. 2, 229-232, 2003.
doi:10.1038/nmat852 Google Scholar
16. Zia, R., M. D. Selker, P. B. Catrysse, and M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A, Vol. 21, No. 12, 2442, 2005.
doi:10.1364/JOSAA.21.002442 Google Scholar
17. De Menezes, J. W., A. Thesing, C. Valsecchi, L. E. G. Armas, and A. G. Brolo, "Improving the performance of gold nanohole array biosensors by controlling the optical collimation conditions," Appl. Opt., Vol. 54, No. 21, 6502-6507, 2015.
doi:10.1364/AO.54.006502 Google Scholar
18. Li, X., M. Soler, C. I. Ozdemir, A. Belushkin, F. Yesilkoy, and H. Altug, "Plasmonic nanohole array biosensor for label-free and real-time analysis of live cell secretion," Lab Chip, Vol. 17, No. 13, 2017.
doi:10.1039/C7LC00277G Google Scholar
19. Cetin, A. E., D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, "Plasmonic nanohole arrays on a robust hybrid substrate for highly sensitive label-free biosensing," ACS Photonics, Vol. 2, No. 8, 1167-1174, 2015.
doi:10.1021/acsphotonics.5b00242 Google Scholar
20. Ebbesen, T. W., H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, Vol. 391, 667-669, 1998.
doi:10.1038/35570 Google Scholar
21. Bethe, H. A., "Theory of diffraction by small holes," Phys. Rev.,, Vol. 66, 163, 1944.
doi:10.1103/PhysRev.66.163 Google Scholar
22. Baida, F. I. and D. Van Labeke, "Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays," Phys. Rev. B, Vol. 67, 155314, 2003.
doi:10.1103/PhysRevB.67.155314 Google Scholar
23. Li, Z. and L. Lin, "Photonic band structures solved by a plane-wave-based transfer-matrix method," Phys. Rev. E, Vol. 67, 046607, 2003.
doi:10.1103/PhysRevE.67.046607 Google Scholar
24. Biswas, R., C. G. Ding, I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, and E. Johnson, "Theory of subwavelength hole arrays coupled with photonic crystals for extraordinary thermal emission," Phys. Rev. B, Vol. 74, 045106, 2006. Google Scholar
25. Martin-Moreno, L. and F. J. Garcia-Vidal, "Minimal model for optical transmission through holey metal films," J. Phys.: Condens. Matter, Vol. 20, 304214, 2008.
doi:10.1088/0953-8984/20/30/304214 Google Scholar
26. De Leon-Perez, F., G. Brucoli, F. J. Garcia-Vidal, and L. Martin-Moreno, "Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film," New Journal of Physics, Vol. 10, 105017, 2008.
doi:10.1088/1367-2630/10/10/105017 Google Scholar
27. Zhang, M., C. Huang, G. Huang, and Y. Zhu, "Theory of extraordinary light transmission through sub-wavelength circular hole arrays," Journal of Optics, Vol. 12, 015004, 2010.
doi:10.1088/2040-8978/12/1/015004 Google Scholar
28. Huang, C., Q. Wang, and Y. Zhu, "Dual effect of surface plasmons in light transmission through perforated metal films," Physical Review B, Vol. 75, 245421, 2007.
doi:10.1103/PhysRevB.75.245421 Google Scholar
29. Martin-Moreno, L. and F. J. Garcia-Vidal, "Optical transmission through circular hole arrays in optically thick metal films," Optics Express, Vol. 12, 3619, 2004.
doi:10.1364/OPEX.12.003619 Google Scholar
30. Rothwell, E. J. and M. J. Cloud, Electromagnetics, CRC Press LLC, Boca Raton, FL, 2001.
doi:10.1201/9781420058260
31. Tretyakov, S., Analytical Modeling in Applied Electromagnetics, Artech House, Inc., Norwood,MA, 2003.
32. Hunter, J. K. and B. Nachtergaele, Applied Analysis, World Scientific, Hackensack, NJ, 2001.
doi:10.1142/4319
33. Drude, P., "Zur Elektronentheorie der Metalle," Ann. Phys., Vol. 306, 566-613, 1900.
doi:10.1002/andp.19003060312 Google Scholar
34. Martin-Moreno, L., F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T.W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett., Vol. 86, 1114-1117, 2001.
doi:10.1103/PhysRevLett.86.1114 Google Scholar
35. Martin-Moreno, L., F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett., Vol. 90, 167401, 2003.
doi:10.1103/PhysRevLett.90.167401 Google Scholar