Vol. 78
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-10-08
The Role of Hybrid Modes in Extraordinary Optical Transmission through a Plasmonic Nanohole Array
By
Progress In Electromagnetics Research C, Vol. 78, 145-158, 2017
Abstract
A mode-matching solution to plane wave scattering by a plasmonic nanohole array consisting of a silver film perforated by an infinite square array of circular holes is presented. A complete orthonormal basis set consisting of waveguide modes satisfying an impedance boundary condition on the hole wall is derived. Impedance boundary conditions are satisfied on the upper and lower horizontal surfaces of the film and on the walls of the hole. Extraordinary optical transmission (EOT) is studied over optical wavelengths. Theory predicts a peak transmission value that is in better agreement with experiment than previous modal studies. The effect of film thickness on coupling between modes bound to the upper and lower surfaces is studied. The transmission profile for thinner films evinces two peaks at different wavelengths resulting from strong coupling between surface waves bound to the upper and lower surfaces. For thicker films, the surface waves decouple and a single peak is observed. The effect of hole radius on EOT is considered. It is demonstrated that transmission peaks occur for holes of a roughly constant electrical size. A relationship between the lattice constant and the transmission-to-area efficiency is quantified.
Citation
Christopher Trampel, "The Role of Hybrid Modes in Extraordinary Optical Transmission through a Plasmonic Nanohole Array," Progress In Electromagnetics Research C, Vol. 78, 145-158, 2017.
doi:10.2528/PIERC17053004
References

1. Pendry, J. B., "Playing tricks with light," Science, Vol. 285, 1687, 1999.
doi:10.1126/science.285.5434.1687        Google Scholar

2. Politano, A., "Influence of structural and electronic properties on the collective excitations of Ag/Cu(111)," Plasmonics, Vol. 7, No. 1, 131-136, 2012.
doi:10.1007/s11468-011-9285-5        Google Scholar

3. Politano, A., "Low-energy collective electronic mode at a noble metal interface," Plasmonics, Vol. 8, No. 2, 357-360, 2013.
doi:10.1007/s11468-012-9397-6        Google Scholar

4. Politano, A., V. Formoso, and G. Chiarello, "Dispersion and damping of gold surface plasmon," Plasmonics, Vol. 3, No. 4, 165, 2008.
doi:10.1007/s11468-008-9070-2        Google Scholar

5. Politano, A., V. Formoso, and G. Chiarello, "Collective electronic excitations in thin Ag films on Ni(111)," Plasmonics, Vol. 8, No. 4, 1683-1690, 2013.
doi:10.1007/s11468-013-9587-x        Google Scholar

6. King, M. D., S. Khadka, G. A. Craig, and M. D. Mason, "Effect of local heating on the SERS efficiency of optically trapped prismatic nanoparticles," The Journal of Physical Chemistry C, Vol. 112, No. 31, 11751-11757, 2008.
doi:10.1021/jp803219x        Google Scholar

7. Politano, A. and G. Chiarello, "The influence of electron confinement, quantum size effects, and film morphology on the dispersion and the damping of plasmonic modes in Ag and Au thin films," Prog. Surf. Sci., Vol. 90, No. 2, 144-193, 2015.
doi:10.1016/j.progsurf.2014.12.002        Google Scholar

8. Haynes, C. L., A. D. McFarland, and R. P. Van Duyne, "Surface-enhanced raman spectroscopy," Anal. Chem., Vol. 77, No. 17, 338A-346A, 2005.
doi:10.1021/ac053456d        Google Scholar

9. Politano, A., A. Cupolillo, G. Di Profio, H. A. Arafat, G. Chiarello, and E. Curcio, "When plasmonics meets membrane technology," Journal of Physics: Condensed Matter, Vol. 28, No. 36, 363003, 2016.
doi:10.1088/0953-8984/28/36/363003        Google Scholar

10. Politano, A., P. Argurio, G. Di Profio, V. Sanna, A. Cupolillo, S. Chakraborty, H. A. Arafat, and E. Curcio, "Photothermal membrane distillation for seawater desalination," Advanced Materials, Vol. 29, No. 2, 1603504, 2017.
doi:10.1002/adma.201603504        Google Scholar

11. Harmsen, S., R. Huang, M. A. Wall, H. Karabeber, J. M. Samii, M. Spaliviero, J. R. White, S. Monette, R. O’Connor, K. L. Pitter, S. A. Sastra, M. Saborowski, E. C. Holland, S. Singer, K. P. Olive, S. W. Lowe, R. G. Blasberg, and M. F. Kircher, "Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging," Science Translational Medicine, Vol. 7, No. 271, 271ra7-271ra7, 2015.
doi:10.1126/scitranslmed.3010633        Google Scholar

12. Krenn, J. R., A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett., Vol. 82, 2590, 1999.
doi:10.1103/PhysRevLett.82.2590        Google Scholar

13. Krenn, J. R., B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Non-diffraction limited light transport by gold nanowires," Europhys. Lett., Vol. 60, No. 5, 663-669, 2001.
doi:10.1209/epl/i2002-00360-9        Google Scholar

14. Lamprecht, B., J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett., Vol. 79, No. 1, 513, 2001.
doi:10.1063/1.1380236        Google Scholar

15. Maier, S. A., P. G. Kik, H. A. Atwater, S.Meltzer, E.Harel, B. E. Koel, and A. A. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nature Materials, Vol. 2, 229-232, 2003.
doi:10.1038/nmat852        Google Scholar

16. Zia, R., M. D. Selker, P. B. Catrysse, and M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A, Vol. 21, No. 12, 2442, 2005.
doi:10.1364/JOSAA.21.002442        Google Scholar

17. De Menezes, J. W., A. Thesing, C. Valsecchi, L. E. G. Armas, and A. G. Brolo, "Improving the performance of gold nanohole array biosensors by controlling the optical collimation conditions," Appl. Opt., Vol. 54, No. 21, 6502-6507, 2015.
doi:10.1364/AO.54.006502        Google Scholar

18. Li, X., M. Soler, C. I. Ozdemir, A. Belushkin, F. Yesilkoy, and H. Altug, "Plasmonic nanohole array biosensor for label-free and real-time analysis of live cell secretion," Lab Chip, Vol. 17, No. 13, 2017.
doi:10.1039/C7LC00277G        Google Scholar

19. Cetin, A. E., D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, "Plasmonic nanohole arrays on a robust hybrid substrate for highly sensitive label-free biosensing," ACS Photonics, Vol. 2, No. 8, 1167-1174, 2015.
doi:10.1021/acsphotonics.5b00242        Google Scholar

20. Ebbesen, T. W., H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, Vol. 391, 667-669, 1998.
doi:10.1038/35570        Google Scholar

21. Bethe, H. A., "Theory of diffraction by small holes," Phys. Rev.,, Vol. 66, 163, 1944.
doi:10.1103/PhysRev.66.163        Google Scholar

22. Baida, F. I. and D. Van Labeke, "Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays," Phys. Rev. B, Vol. 67, 155314, 2003.
doi:10.1103/PhysRevB.67.155314        Google Scholar

23. Li, Z. and L. Lin, "Photonic band structures solved by a plane-wave-based transfer-matrix method," Phys. Rev. E, Vol. 67, 046607, 2003.
doi:10.1103/PhysRevE.67.046607        Google Scholar

24. Biswas, R., C. G. Ding, I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, and E. Johnson, "Theory of subwavelength hole arrays coupled with photonic crystals for extraordinary thermal emission," Phys. Rev. B, Vol. 74, 045106, 2006.        Google Scholar

25. Martin-Moreno, L. and F. J. Garcia-Vidal, "Minimal model for optical transmission through holey metal films," J. Phys.: Condens. Matter, Vol. 20, 304214, 2008.
doi:10.1088/0953-8984/20/30/304214        Google Scholar

26. De Leon-Perez, F., G. Brucoli, F. J. Garcia-Vidal, and L. Martin-Moreno, "Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film," New Journal of Physics, Vol. 10, 105017, 2008.
doi:10.1088/1367-2630/10/10/105017        Google Scholar

27. Zhang, M., C. Huang, G. Huang, and Y. Zhu, "Theory of extraordinary light transmission through sub-wavelength circular hole arrays," Journal of Optics, Vol. 12, 015004, 2010.
doi:10.1088/2040-8978/12/1/015004        Google Scholar

28. Huang, C., Q. Wang, and Y. Zhu, "Dual effect of surface plasmons in light transmission through perforated metal films," Physical Review B, Vol. 75, 245421, 2007.
doi:10.1103/PhysRevB.75.245421        Google Scholar

29. Martin-Moreno, L. and F. J. Garcia-Vidal, "Optical transmission through circular hole arrays in optically thick metal films," Optics Express, Vol. 12, 3619, 2004.
doi:10.1364/OPEX.12.003619        Google Scholar

30. Rothwell, E. J. and M. J. Cloud, Electromagnetics, CRC Press LLC, Boca Raton, FL, 2001.
doi:10.1201/9781420058260

31. Tretyakov, S., Analytical Modeling in Applied Electromagnetics, Artech House, Inc., Norwood,MA, 2003.

32. Hunter, J. K. and B. Nachtergaele, Applied Analysis, World Scientific, Hackensack, NJ, 2001.
doi:10.1142/4319

33. Drude, P., "Zur Elektronentheorie der Metalle," Ann. Phys., Vol. 306, 566-613, 1900.
doi:10.1002/andp.19003060312        Google Scholar

34. Martin-Moreno, L., F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T.W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett., Vol. 86, 1114-1117, 2001.
doi:10.1103/PhysRevLett.86.1114        Google Scholar

35. Martin-Moreno, L., F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett., Vol. 90, 167401, 2003.
doi:10.1103/PhysRevLett.90.167401        Google Scholar