Vol. 77
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-08-28
A Novel Six-Band Polarization-Insensitive Metamaterial Absorber with Four Multiple-Mode Resonators
By
Progress In Electromagnetics Research C, Vol. 77, 133-144, 2017
Abstract
A novel six-band metamaterial absorber based on four multiple-mode Ω-shaped resonators (MMORs) is presented, analyzed and measured in this paper. The discrete absorption responses, determined by horizontal-oriented and vertical-oriented MMORs, can be combined to add the total number of absorption peaks. Among the six absorption peaks, four absorption peaks are excited by horizontal-oriented MMOR, and the other two are excited by vertical-oriented MMOR. The absorber, composed of a simple resonators-dielectric-sheet sandwich structure, has six distinct near-perfect absorption peaks with the polarization-insensitive characteristic in the range from 2 to 17 GHz. To reveal the physical mechanism, the distributions of surface current and power loss density, and the equivalent circuit model are also investigated at the six absorption peaks. Moreover, the measured results are in good agreement with the simulated ones and show that the average absorption rate of proposed absorber is over 97.21%.
Citation
Guoqing Xu Jie Huang Zongde Ju Zhihua Wei Jing Li Qian Zhao , "A Novel Six-Band Polarization-Insensitive Metamaterial Absorber with Four Multiple-Mode Resonators," Progress In Electromagnetics Research C, Vol. 77, 133-144, 2017.
doi:10.2528/PIERC17060203
http://www.jpier.org/PIERC/pier.php?paper=17060203
References

1. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, May 2000.
doi:10.1103/PhysRevLett.84.4184

2. Fu, W., et al., "Polarization insensitive wide-angle triple-band metamaterial bandpass filter," J. Phys. D. Appl. Phys., Vol. 49, No. 28, 285110, Jul. 2016.
doi:10.1088/0022-3727/49/28/285110

3. Lin, F. H. and Z. N. Chen, "Low-profile wideband metasurface antennas using characteristic mode analysis," IEEE Trans. Antennas Propag., Vol. 65, No. 4, 1706-1713, Apr. 2017.
doi:10.1109/TAP.2017.2671036

4. Zhang, L., et al., "Ultrabroadband design for linear polarization conversion and asymmetric transmission crossing X- and K-band," Sci. Rep., Vol. 6, No. 1, 33826, Dec. 2016.
doi:10.1038/srep33826

5. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, No. 20, 207402, May 2008.
doi:10.1103/PhysRevLett.100.207402

6. Thummaluru, S. R., N. Mishra, and R. K. Chaudhary, "Design and analysis of an ultrathin Xband polarization-insensitive metamaterial absorber," Microw. Opt. Technol. Lett., Vol. 58, No. 10, 2481-2485, Oct. 2016.
doi:10.1002/mop.30071

7. Trung, N. T., D. Lee, H. Sung, and S. Lim, "Angle- and polarization-insensitive metamaterial absorber based on vertical and horizontal symmetric slotted sectors," Appl. Opt., Vol. 55, No. 29, 8301, Oct. 2016.
doi:10.1364/AO.55.008301

8. Cheng, Y. and H. Yang, "Design, simulation, and measurement of metamaterial absorber," J. Appl. Phys., Vol. 108, No. 3, 34906, Aug. 2010.
doi:10.1063/1.3311964

9. Bhattacharyya, S. and K. V. Srivastava, "An ultra thin electric field driven LC resonator structure as metamaterial absorber for dual band applications," International Symposium on Electromagnetic Theory, Vol. C, 722-725, 2013.

10. Dincer, F., M. Karaaslan, E. Unal, O. Akgol, and C. Sabah, "Multi-band metamaterial absorber: Design, experiment and physical interpretation," ACES J., Vol. 29, No. 3, 197-202, 2014.

11. Dincer, F., M. Karaaslan, E. Unal, and C. Sabah, "Dual-band polarization independent metamaterial absorber based on omega resoanator and octa-star strip configuration," Progress In Electromagnetics Research, Vol. 141, 219-231, Jul. 2013.

12. Dincer, F., et al., "Multi-band polarization independent cylindrical metamaterial absorber and sensor application," Mod. Phys. Lett. B, Vol. 30, No. 8, 1650095, Mar. 2016.
doi:10.1142/S0217984916500950

13. Tak, J., Y. Jin, and J. Choi, "A dual-band metamaterial microwave absorber," Microw. Opt. Technol. Lett., Vol. 58, No. 9, 2052-2057, Sep. 2016.
doi:10.1002/mop.29977

14. Chen, J., Z. Hu, S. Wang, X. Huang, and M. Liu, "A triple-band, polarization- and incident angleindependent microwave metamaterial absorber with interference theory," Eur. Phys. J. B, Vol. 89, No. 1, 14, Jan. 2016.
doi:10.1140/epjb/e2015-60626-y

15. Liu, S., et al., "A bi-layered quad-band metamaterial absorber at terahertz frequencies," J. Appl. Phys., Vol. 118, No. 24, 245304, Dec. 2015.
doi:10.1063/1.4938110

16. Liu, Y., S. Gu, C. Luo, and X. Zhao, "Ultra-thin broadband metamaterial absorber," Appl. Phys. A, Vol. 108, No. 1, 19-24, Jul. 2012.
doi:10.1007/s00339-012-6936-0

17. Xiong, H., J.-S. Hong, C.-M. Luo, and L.-L. Zhong, "An ultrathin and broadband metamaterial absorber using multi-layer structures," J. Appl. Phys., Vol. 114, No. 6, 64109, Aug. 2013.
doi:10.1063/1.4818318

18. Gunduz, O. T. and C. Sabah, "Polarization angle independent perfect multiband metamaterial absorber and energy harvesting application," J. Comput. Electron., Vol. 15, No. 1, 228-238, Mar. 2016.
doi:10.1007/s10825-015-0735-8

19. Ghosh, S., S. Bhattacharyya, Y. Kaiprath, D. Chaurasiya, and K. V. Srivastava, "Triple-band polarization-independent metamaterial absorber using destructive interference," 2015 European Microwave Conference (EuMC), 335-338, 2015.
doi:10.1109/EuMC.2015.7345768

20. Bhattacharyya, S. and K. Vaibhav Srivastava, "Triple band polarization-independent ultra-thin metamaterial absorber using electric field-driven LC resonator," J. Appl. Phys., Vol. 115, No. 6, 64508, Feb. 2014.
doi:10.1063/1.4865273

21. Chaurasiya, D., S. Ghosh, S. Bhattacharyya, and K. V. Srivastava, "An ultrathin quad-band polarization-insensitive wide-angle metamaterial absorber," Microw. Opt. Technol. Lett., Vol. 57, No. 3, 697-702, Mar. 2015.
doi:10.1002/mop.28928

22. Wang, B.-X., G.-Z. Wang, and L.-L. Wang, "Design of a novel dual-band terahertz metamaterial absorber," Plasmonics, Vol. 11, No. 2, 523-530, Apr. 2016.
doi:10.1007/s11468-015-0076-2

23. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, No. 19, 195104, Apr. 2002.
doi:10.1103/PhysRevB.65.195104

24. Bhattacharyya, S., S. Ghosh, and K. Vaibhav Srivastava, "Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band," J. Appl. Phys., Vol. 114, No. 9, 94514, Sep. 2013.
doi:10.1063/1.4820569

25. Bian, B., et al., "Novel triple-band polarization-insensitive wide-angle ultra-thin microwave metamaterial absorber," J. Appl. Phys., Vol. 114, No. 19, 194511, Nov. 2013.
doi:10.1063/1.4832785

26. Bhattacharyya, S., S. Ghosh, and K. V. Srivastava, "Equivalent circuit model of an ultra-thin polarization-independent triple band metamaterial absorber," AIP Adv., Vol. 4, No. 9, 97127, Sep. 2014.
doi:10.1063/1.4896282

27. Baskey, H. B., M. J. Akhtar, A. K. Dixit, and T. C. Shami, "Design, synthesis, characterization and performance evaluation of multi-band perfect metamaterial absorber," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 18, 2479-2491, Dec. 2015.
doi:10.1080/09205071.2015.1075907

28. Pang, Y., H. Cheng, Y. Zhou, and J. Wang, "Analysis and design of wire-based metamaterial absorbers using equivalent circuit approach," J. Appl. Phys., Vol. 113, No. 11, 2013.
doi:10.1063/1.4795277

29. Zhou, J., E. N. Economon, T. Koschny, and C. M. Soukoulis, "Unifying approach to left-handed material design," Opt. Lett., Vol. 31, No. 24, 3620, Dec. 2006.
doi:10.1364/OL.31.003620

30. Hong, J., Microstrip Filters for RF/Microwave Applications, 2nd Ed., John Wiley & Sons, Inc., 2011.
doi:10.1002/9780470937297

31. Xu, H.-X., G.-M. Wang, M.-Q. Qi, J.-G. Liang, J.-Q. Gong, and Z.-M. Xu, "Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber," Phys. Rev. B, Vol. 86, No. 20, 205104, Nov. 2012.
doi:10.1103/PhysRevB.86.205104

32. Wang, B.-Y., et al., "A novel ultrathin and broadband microwave metamaterial absorber," J. Appl. Phys., Vol. 116, No. 9, 94504, Sep. 2014.
doi:10.1063/1.4894824