Vol. 77
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-08-25
A Frequency Reconfigurable Meandered Slot Cut Rectangular Patch Antenna Using PIN Diodes
By
Progress In Electromagnetics Research C, Vol. 77, 81-89, 2017
Abstract
A frequency reconfigurable patch antenna is proposed. The antenna has a rectangular patch with two meandered slots. It can be switched between four bands using two PIN diodes by altering current distribution across the slot edges. The overall dimension of the antenna patch is 11.51 mm × 8.37 mm and fabricated on an FR4 substrate. The design is investigated by simulation and measurement, and the result includes S11 parameters, radiation patterns, measured directivity and gain. With different combinations of PIN diode biasing conditions, the antenna can be set to 6.80 GHz, 7.34 GHz, 7.80 GHz and 8.18 GHz, which collectively covers a continuous frequency range of 1.80 GHz (- 10 dB band width). The antenna also shows consistent radiation patterns at all the reconfigured frequency bands with an average beam width of about 75°. In the accessible frequency range an average gain of 5.14 dBi and low level of cross polarizations are also recorded. A good agreement between measured and simulated results validates the presented concept of frequency reconfiguration.
Citation
Rocktotpal Baruah, and Nidhi Saxena Bhattacharyya, "A Frequency Reconfigurable Meandered Slot Cut Rectangular Patch Antenna Using PIN Diodes," Progress In Electromagnetics Research C, Vol. 77, 81-89, 2017.
doi:10.2528/PIERC17061201
References

1. Hinsz, L. and B. D. Braaten, "A frequency reconfigurable transmitter antenna with autonomous switching capabilities," IEEE Transactions on Antennas and Propagation, Vol. 62, 3809-3813, 2014.
doi:10.1109/TAP.2014.2316298        Google Scholar

2. Petosa, A., "An overview of tuning techniques for frequency-agile antennas," IEEE Antennas and Propagation Magazine, Vol. 54, 271-296, 2012.
doi:10.1109/MAP.2012.6348178        Google Scholar

3. Ge, L. and K. M. Luk, "Frequency-reconfigurable low-profile circular monopolar patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 62, 3443-3449, 2014.
doi:10.1109/TAP.2013.2287520        Google Scholar

4. Peroulis, D., K. Sarabandi, and L. P. B. Katehi, "Design of reconfigurable slot antennas," IEEE Transactions on Antennas and Propagation, Vol. 53, 645-654, 2005.
doi:10.1109/TAP.2004.841339        Google Scholar

5. Oh, S. S., Y. B. Jung, Y. R. Ju, and H. D. Park, "Frequency-tunable open-ring microstrip antenna using varactor," 2010 International Conference on Electromagnetics in Advanced Applications, 624-626, 2010.
doi:10.1109/ICEAA.2010.5652325        Google Scholar

6. White, C. R. and G. M. Rebeiz, "Single- and dual-polarized tunable slot-ring antennas," IEEE Transactions on Antennas and Propagation, Vol. 57, 19-26, 2009.
doi:10.1109/TAP.2008.2009664        Google Scholar

7. Cetiner, B. A., G. R. Crusats, L. Jofre, and N. Biyikli, "RF MEMS integrated frequency reconfigurable annular slot antenna," IEEE Transactions on Antennas and Propagation, Vol. 58, 626-632, 2010.
doi:10.1109/TAP.2009.2039300        Google Scholar

8. Tawk, Y., J. Costantine, K. Avery, and C. G. Christodoulou, "Implementation of a cognitive radio front-end using rotatable controlled reconfigurable antennas," IEEE Transactions on Antennas and Propagation, Vol. 59, 1773-1778, 2011.
doi:10.1109/TAP.2011.2122239        Google Scholar

9. Panagamuwa, C. J., A. Chauraya, and J. C. Vardaxoglou, "Frequency and beam reconfigurable antenna using photoconducting switches," IEEE Transactions on Antennas and Propagation, Vol. 54, 449-454, 2006.
doi:10.1109/TAP.2005.863393        Google Scholar

10. Anagnostou, D. E., Z. Guizhen, M. T. Chryssomallis, J. C. Lyke, G. E. Ponchak, J. Papapolymerou, et al. "Design, fabrication, and measurements of an RF-MEMS-based self-similar reconfigurable antenna," IEEE Transactions on Antennas and Propagation, Vol. 54, 422-432, 2006.
doi:10.1109/TAP.2005.863399        Google Scholar

11. Christodoulou, C. G., Y. Tawk, S. A. Lane, and S. R. Erwin, "Reconfigurable antennas for wireless and space applications," Proceedings of the IEEE, Vol. 100, 2250-2261, 2012.
doi:10.1109/JPROC.2012.2188249        Google Scholar

12. Erfani, E., J. Nourinia, C. Ghobadi, M. Niroo-Jazi, and T. A. Denidni, "Design and implementation of an integrated UWB/reconfigurable-slot antenna for cognitive radio applications," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 77-80, 2012.
doi:10.1109/LAWP.2011.2182631        Google Scholar

13. Li, T., H. Zhai, X. Wang, L. Li, and C. Liang, "Frequency-reconfigurable bow-tie antenna for bluetooth, WiMAX, and WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 171-174, 2015.
doi:10.1109/LAWP.2014.2359199        Google Scholar

14. Chunna, Z., Y. Songnan, H. K. Pan, A. E. Fathy, S. El-Ghazaly, and V. Nair, "Development of reconfigurable mini-nested patches antenna for universal wireless receiver using MEMS," 2006 IEEE Antennas and Propagation Society International Symposium, 205-208, 2006.
doi:10.1109/APS.2006.1710490        Google Scholar

15. Bhattacharjee, T., H. Jiang, and N. Behdad, "Fluidic beam steering in parasitically coupled patch antenna arrays," Electronics Letters, Vol. 51, 1229-1231, 2015.
doi:10.1049/el.2015.1908        Google Scholar

16. Weedon, W. H., W. J. Payne, and G. M. Rebeiz, "MEMS-switched reconfigurable antennas," IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229), Vol. 3, 654-657, 2001.
doi:10.1109/APS.2001.960181        Google Scholar

17. Fan, Y. and Y. Rahmat-Samii, "Patch antennas with switchable slots (PASS) in wireless communications: concepts, designs, and applications," IEEE Antennas and Propagation Magazine, Vol. 47, 13-29, 2005.        Google Scholar

18. Nazir, I., I. E. Rana, N. U. A. Mir, and K. Afreen, "Design and analysis of a frequency reconfigurable microstrip patch antenna switching between four frequency bands," Progress In Electromagnetics Research C, Vol. 68, 179-191, 2016.
doi:10.2528/PIERC16052405        Google Scholar

19. Majid, H. A., M. K. A. Rahim, M. R. Hamid, N. A. Murad, and M. F. Ismail, "Frequencyreconfigurable microstrip patch-slot antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 218-220, 2013.
doi:10.1109/LAWP.2013.2245293        Google Scholar

20. Pazin, L. and Y. Leviatan, "Reconfigurable slot antenna for switchable multiband operation in a wide frequency range," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 329-332, 2013.
doi:10.1109/LAWP.2013.2246855        Google Scholar

21. Li, H., J. Xiong, Y. Yu, and S. He, "A simple compact reconfigurable slot antenna with a very wide tuning range," IEEE Transactions on Antennas and Propagation, Vol. 58, 3725-3728, 2010.
doi:10.1109/TAP.2010.2071347        Google Scholar

22. Xiao, S., B.-Z. Wang, and X.-S. Yang, "A novel frequency-reconfigurable patch antenna," Microwave and Optical Technology Letters, Vol. 36, 295-297, 2003.
doi:10.1002/mop.10746        Google Scholar

23. Oliveira, E. E. C., P. H. d. F. Silva, A. L. P. S. Campos, and A. G. d’Assuno, "Small-size quasifractal patch antenna using the Minkowski curve," Microwave and Optical Technology Letters, Vol. 52, 805-809, 2010.
doi:10.1002/mop.25071        Google Scholar

24. Agrawal, A. K. and K. J. Vinoy, "Microstrip coupled line bandpass filter using quasi Minkowski fractal shape for suppression of the second harmonic," 2015 IEEE MTT-S International Microwave and RF Conference (IMaRC), 412-415, 2015.
doi:10.1109/IMaRC.2015.7411406        Google Scholar

25. Ren, Z., W.-T. Li, L. Xu, and X.-W. Shi, "A compact frequency reconfigurable unequal U-slot antenna with a wide tunability range," Progress In Electromagnetics Research Letters, Vol. 39, 9-16, 2013.
doi:10.2528/PIERL13022508        Google Scholar

26. Koley, S. and D. Mitra, "A compact dual-band reconfigurable open-end slot antenna for cognitive radio front end system," Progress In Electromagnetics Research C, Vol. 58, 33-41, 2015.
doi:10.2528/PIERC15051703        Google Scholar

27. Sharma, S. and C. C. Tripathi, "Frequency reconfigurable U-slot antenna for SDR application," Progress In Electromagnetics Research Letters, Vol. 55, 129-136, 2015.
doi:10.2528/PIERL15071304        Google Scholar