1. Li, H.-Y., J. Zhan, Z.-S. Wu, and P. Kong, "Numerical simulations of ELF/VLF wave generated by modulated beat-wave ionospheric heating in high latitude regions," Progress In Electromagnetics Research M, Vol. 50, 55-63, 2016.
doi:10.2528/PIERM16062604 Google Scholar
2. James, M., "Stripping very low frequency communication signals with minimum shift keying encoding from streamed time-domain electromagnetic data," Geophysics, Vol. 80, No. 6, 343-353, 2015.
doi:10.1190/geo2015-0304.1 Google Scholar
3. Aizebeokhai, A. P. and K. D. Oyeyemi, "Application of geoelectrical resistivity imaging and VLF-EM for subsurface characterization in a sedimentary terrain, Southwestern Nigeria," Arabian Journal of Geosciences, Vol. 8, No. 6, 4083-4099, 2015.
doi:10.1007/s12517-014-1482-z Google Scholar
4. Hurdsman, D. E., P. M. Hansen, and J. W. Rockway, "LF and VLF antenna modeling," Antennas and Propagation Society International Symposium, Vol. 4, 811-814, IEEE, 2003. Google Scholar
5. Liu, C., Q. Z. Liu, L. G Zheng, and W. Yu, "Numeric calculation of input impedance for a giant VLF T-type antenna array," Progress In Electromagnetics Research, Vol. 75, 1-10, 2007.
doi:10.2528/PIER07051701 Google Scholar
6. Best, S. R., "A discussion on the properties of electrically small self-resonant wire antennas," IEEE Antennas and Propagation Magazine, Vol. 46, No. 6, 9-22, 2004.
doi:10.1109/MAP.2004.1396731 Google Scholar
7. Li, H. F. and C. Liu, "Calculation on characteristics of VLF umbrella inverted-cone transmitting antenna," 2014 Sixth International Conference on Ubiquitous and Future Networks (ICUFN), 389-391, Shanghai, 2014.
doi:10.1109/ICUFN.2014.6876819 Google Scholar
8. Li, H. and C. Liu, "Calculation on characteristics of VLF umbrella inverted-cone transmitting antenna," International Conference on Ubiquitous & Future Networks, 389-391, IEEE, July 2014. Google Scholar
9. Dong, Y., C. Liu, G. Dai, and Y. Yan, "VLF transmit antenna impedance characteristic based on top-Load configuration," Dianbo Kexue Xuebao/Chinese Journal of Radio Science, Vol. 29, No. 4, 763-768, 2014. Google Scholar
10. Liang, Z. X., H. Xie, Y. Guo, J. Wang, E. P. Li, et al. "Improved hybrid leapfrog ADI-FDTD method for simulating near-field coupling effects among multiple thin wire monopole antennas on a complex platform," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 2, 618-626, 2017.
doi:10.1109/TEMC.2016.2632129 Google Scholar
11. Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, et al. "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, No. 5834, 83-86, AAAS, 2007.
doi:10.1126/science.1143254 Google Scholar
12. Huang, Q., H. Zhou, and X.-W. Shi, "A new compensating method for the mutual coupling effect in adaptive antenna arrays composed of wire elements," Progress In Electromagnetics Research C, Vol. 35, 221-236, 2013.
doi:10.2528/PIERC12110804 Google Scholar
13. Youndo, T., P. Jongmin, and N. Sangwook, "Mode-based analysis of resonant characteristics for near-field coupled small antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 8, No. 4, 1238-1241, IEEE, 2009.
doi:10.1109/LAWP.2009.2036133 Google Scholar
14. Fallahi, R. and M. Roshandel, "Effect of mutual coupling and configuration of concentric circular array antenna on the signal-to-interference performance in CDMA systems," Progress In Electromagnetics Research, Vol. 76, 427-447, 2007.
doi:10.2528/PIER07070104 Google Scholar
15. Liao, B. and S. C. Chan, "A cumulant-based method for direction finding in uniform linear array with mutual coupling," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1717-1720, IEEE, August 2014.
doi:10.1109/LAWP.2014.2352939 Google Scholar
16. Gupta, I. J. and A. A. Ksienski, "Effect of mutual coupling on the performance of adaptive arrays," IEEE Transactions on Antennas and Propagation, Vol. 31, No. 5, 785-791, September 1983.
doi:10.1109/TAP.1983.1143128 Google Scholar
17. Su, T. and L. Hao, "On modeling mutual coupling in antenna arrays using the coupling matrix," Microwave and Optical Technology Letters, Vol. 28, No. 4, 232-237, February 2001.
doi:10.1002/1098-2760(20010220)28:4<231::AID-MOP1004>3.0.CO;2-P Google Scholar
18. Ralchenko, M., M. Roper, M. Svilans, and C. Samson, "Coupling of very low frequency through-the- Earth radio signals to elongated conductors," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 6, 3146-3153, 2017.
doi:10.1109/TAP.2017.2694758 Google Scholar
19. Balanis, C. A., Antenna Theory: Analysis and Design, 4th Ed., Wiley Press, Hoboken, 2016.
20. Rueda, C. I. P. and R. B. Miller, "A new approximate closed solution for small dipole antenna with method of moments," IEEE Latin America Transactions, Vol. 14, No. 4, 1562-1569, IEEE, 2016.
doi:10.1109/TLA.2016.7483483 Google Scholar
21. He, Q. Q. and B. Z. Wang, "Design of microstrip array antenna by using active element pattern technique combining with Taylor synthesis method," Progress In Electromagnetics Research, Vol. 80, 63-76, 2008.
doi:10.2528/PIER07103006 Google Scholar
22. Carlo, F. M. C. and B. Alessio, "Electromotive force induced in and inductance of an electrically small circular loop antenna," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 4, 780-783, August 2014.
doi:10.1109/TEMC.2013.2280661 Google Scholar
23. Carobbi, C. F. M. and A. Bonci, "Electromotive force induced in and inductance of an electrically small circular loop antenna," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 4, 780-783, 2012.
doi:10.1109/TEMC.2013.2280661 Google Scholar
24. Liu, C., H. Jiang, and J. H. Huang, Very Low Frequency Communication, Haichao Press, Beijing, 2008.
25. Jobava, R. G., A. L. Gheonjian, J. Hippeli, G. Chiqovani, D. D. Karkashadze, et al. "Simulation of low-frequency magnetic fields in automotive EMC problems," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 6, 1420-1430, 2014.
doi:10.1109/TEMC.2014.2325134 Google Scholar
26. Taylor, D. and P. Loschialpo, "Imaging of helical surface wavemodes in the near field," Journal of Electromagnetic Waves and Application, Vol. 17, No. 11, 1593-1604, 2003.
doi:10.1163/156939303772681451 Google Scholar
27. Ubeda, E., J. M.Rius, and A. Heldring, "Nonconforming discretization of the electric-field integral equation for closed perfectly conducting objects," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 8, 4171-4186, 2014.
doi:10.1109/TAP.2014.2325954 Google Scholar
28. Miller, E. K. and F. J. Dearick, "Some computational aspects of thin-wire modeling," Numerical and Asymptotic Techniques in Electromagnetics, Vol. 3, 89-127, Springer-Verlag, New York, July 2005. Google Scholar
29. Hatamzadeh-Varmazyar, S., M. Naser-Moghadasi, and Z. Masouri, "A moment method simulation of electromagnetic scattering from conducting bodies," Progress In Electromagnetics Research, Vol. 81, 99-119, 2008.
doi:10.2528/PIER07122502 Google Scholar
30. Huang, Q. L., Electrical Power Engineer’s Handbook, China Electric Power Press, Beijing, 2002.
31. Hansen, P. and J. Chavez, VLF Cutler: September 1997, Four-Panel Tests; RADHAZ and Field Strength Measurement, Space and Naval Warfare Systems Center, San Diego, 1997.
32. Hansen, P., "Terrestrial antenna for high power VLF radiation into the magnetosphere," General Assembly and Scientific Symposium (URSI GASS), 1-4, Beijing, 2014. Google Scholar