Vol. 81
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-02-14
Linear and Nonlinear Properties of Graphene at Millimeter-Wave for Multiplier and Mixer Applications
By
Progress In Electromagnetics Research C, Vol. 81, 141-149, 2018
Abstract
In this paper linear and nonlinear properties of graphene at millimeter wave frequency band are investigated. The nonlinear properties of the graphene are utilized to design frequency multiplier and mixer for millimeter wave applications. A patch of graphene is deposited on the dielectric image guide that will generate higher order harmonics. The amplitude of harmonics is optimized based on the dimensions of the graphene patch on top of the dielectric image guide. A frequency multiplier and mixer are designed, which utilize the second harmonics generated through graphene. The nonlinear behavior of the proposed designs has been simulated in the 50-75 GHz input signal frequency range. A conversion efficiency of -23 dB is obtained for the second harmonic for the frequency doubler. The frequency mixer is designed to mix two frequencies in V-band using dielectric image guide as the waveguide. A -28 dB conversion efficiency is simulated on a dielectric image-guide platform.
Citation
Amr Samir Hesham El-Sherif Sherif Kishk Maher M. Abdel-Razzak Mohamed Basha , "Linear and Nonlinear Properties of Graphene at Millimeter-Wave for Multiplier and Mixer Applications," Progress In Electromagnetics Research C, Vol. 81, 141-149, 2018.
doi:10.2528/PIERC17072403
http://www.jpier.org/PIERC/pier.php?paper=17072403
References

1. Bontu, C. S., D. D. Falconer, and L. Strawczynski, "Simple equalization scheme for high rate FSK data transmission in the millimeter wave frequency band," Sixth IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 1995, PIMRC'95, Wireless: Merging onto the Information Superhighway, Vol. 1, IEEE, 1995.

2. Bontu, C. S., D. D. Falconer, and L. Strawczynski, "Feasibility evaluation of high rate FSK data transmission and equalization for millimeter wave indoor radio," 1996 5th IEEE International Conference on Universal Personal Communications, 1996, Record, Vol. 2, IEEE, 1996.

3. Wei, X., et al., "A wide band millimeter-wave substrate integrated coaxial line (SICL) for high speed data transmission," 2015 Asia-Pacific Microwave Conference (APMC), Vol. 3, IEEE, 2015.

4. Kemp, M. C., A. Glauser, C, and Baker, "Recent developments in people screening using terahertz technology: Seeing the world through terahertz eyes," Defense and Security Symposium, International Society for Optics and Photonics, 2006.

5. Vaseashta, A., "New THz technologies and applications in applications in support of safety and security," THz and Security Applications, 277-292, Springer, Netherlands, 2014.

6. Cooper, K. B., et al., "Penetrating 3-D imaging at 4-and 25-m range using a submillimeter-wave radar," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 12, 2771-2778, 2008.
doi:10.1109/TMTT.2008.2007081

7. Fakharzadeh, M., M. Nezhad-Ahmadi, B. Biglarbegian, J. Ahmadi-Shokouh, and S. Safavi-Naeini, "CMOS phased array transceiver technology for 60 GHz wireless applications," IEEE Trans. on Antennas and Propagation, Vol. 58, No. 4, 1093-1104, Apr. 2010.
doi:10.1109/TAP.2010.2041140

8. Basha, M. A., et al., "Novel D-band Si-based integrated platform for millimeter wave," 2014 44th European Microwave Conference (EuMC), IEEE, 2014.

9. Basha, M. A., A. Samir, and R. H. Zaghloul, "Evolution of DIG integrated platform for millimeter-wave applications," 2015 IEEE Radio and Wireless Symposium (RWS), IEEE, 2015.

10. Glazov, M. M. and S. D. Ganichev, "High frequency electric field induced nonlinear effects in graphene," Physics Reports, Vol. 535, No. 3, 101-138, 2014.
doi:10.1016/j.physrep.2013.10.003

11. Mikhailov, S. A., "Non-linear graphene optics for terahertz applications," Microelectronics J., Vol. 40, No. 4-5, 712-715, 2009.
doi:10.1016/j.mejo.2008.11.042

12. Ishikawa, K. L., "Nonlinear optical response of graphene in time domain," Phys. Rev. B, Vol. 82, No. 20, 201402, Nov. 2010.
doi:10.1103/PhysRevB.82.201402

13. Hadarig, A. I., et al., "Experimental analysis of the high-order harmonic components generation in few-layer graphene," Applied Physics A, Vol. 118, No. 1, 83-89, 2015.
doi:10.1007/s00339-014-8739-y

14. Amir, F., C. Mitchell, and M. Missous, "Development of advanced Gunn diodes and Schottky multipliers for high power THz sources," 2010 8th International Conference on Advanced Semiconductor Devices & Microsystems (ASDAM), IEEE, 2010.

15. Ward, J. and et al, "Capability of THz sources based on Schottky diode frequency multiplier chains," 2004 IEEE MTT-S International Microwave Symposium Digest, Vol. 3, IEEE, 2004.

16. Feng, Z. H., et al., "High-frequency multiplier based on GaN planar Schottky barrier diodes," 2016 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AM, IEEE, 2016.

17. Hanson, G. W., "Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene," Journal of Applied Physics, Vol. 103, No. 6, 064302, 2008.
doi:10.1063/1.2891452

18. Niu, J., M. Luo, and Q. H. Liu, "Full-wave nonlinear optical analyses of graphene-based optoelectronic devices," 2015 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), IEEE, 2015.

19. Hotopan, G. R., S. Ver-Hoeye, C. Vazquez-Antuna, R. Camblor-Diaz, M. Fernandez-Garcia, F. Las Heras Andres, P. Alvarez, and R. Menendez, "Millimeter wave microstrip mixer based on graphene," Progress In Electromagnetics Research, Vol. 118, 57-69, 2011.
doi:10.2528/PIER11051709

20. Yang, K., S. Arezoomandan, and B. Sensale-Rodriguez, "The linear and nonlinear THz properties of graphene," International Journal of Terahertz Science and Technology, Vol. 6, No. 4, 223-233, 2013.

21. Hendry, E., et al., "Coherent nonlinear optical response of graphene," Phys. Rev. Lett., Vol. 105, 097401, 2010.
doi:10.1103/PhysRevLett.105.097401

22. Graphenea LTD, "MikeletegiPasealekua,", 83, 20009 Donostia, Gipuzkoa, Spain.

23. Zhao, W., M. Fang, F. Wu, H. Wu, L. Wang, and G. Chen, "Preparation of graphene by exfoliation of graphite using wet ball milling," J. Mater. Chem., Vol. 20, No. 28, 5817, 2010.
doi:10.1039/c0jm01354d

24. Takatoshi, Y., K. Jaeho, I. Masatou, and H. Masataka, "Low-temperature graphene synthesis using microwave plasma CVD," J. Phys. D. Appl. Phys., Vol. 46, No. 6, 63001, 2013.
doi:10.1088/0022-3727/46/6/063001

25. Falcao-Filho, E. L., et al., "Analytic scaling analysis of high harmonic generation conversion efficiency," Optics Express, Vol. 17, No. 13, 11217-11229, 2009.
doi:10.1364/OE.17.011217