1. Bontu, C. S., D. D. Falconer, and L. Strawczynski, "Simple equalization scheme for high rate FSK data transmission in the millimeter wave frequency band," Sixth IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 1995, PIMRC'95, Wireless: Merging onto the Information Superhighway, Vol. 1, IEEE, 1995. Google Scholar
2. Bontu, C. S., D. D. Falconer, and L. Strawczynski, "Feasibility evaluation of high rate FSK data transmission and equalization for millimeter wave indoor radio," 1996 5th IEEE International Conference on Universal Personal Communications, 1996, Record, Vol. 2, IEEE, 1996. Google Scholar
3. Wei, X., et al. "A wide band millimeter-wave substrate integrated coaxial line (SICL) for high speed data transmission," 2015 Asia-Pacific Microwave Conference (APMC), Vol. 3, IEEE, 2015. Google Scholar
4. Kemp, M. C., A. Glauser, C, and Baker, "Recent developments in people screening using terahertz technology: Seeing the world through terahertz eyes," Defense and Security Symposium, International Society for Optics and Photonics, 2006. Google Scholar
5. Vaseashta, A., "New THz technologies and applications in applications in support of safety and security," THz and Security Applications, 277-292, Springer, Netherlands, 2014. Google Scholar
6. Cooper, K. B., et al. "Penetrating 3-D imaging at 4-and 25-m range using a submillimeter-wave radar," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 12, 2771-2778, 2008.
doi:10.1109/TMTT.2008.2007081 Google Scholar
7. Fakharzadeh, M., M. Nezhad-Ahmadi, B. Biglarbegian, J. Ahmadi-Shokouh, and S. Safavi-Naeini, "CMOS phased array transceiver technology for 60 GHz wireless applications," IEEE Trans. on Antennas and Propagation, Vol. 58, No. 4, 1093-1104, Apr. 2010.
doi:10.1109/TAP.2010.2041140 Google Scholar
8. Basha, M. A., et al. "Novel D-band Si-based integrated platform for millimeter wave," 2014 44th European Microwave Conference (EuMC), IEEE, 2014. Google Scholar
9. Basha, M. A., A. Samir, and R. H. Zaghloul, "Evolution of DIG integrated platform for millimeter-wave applications," 2015 IEEE Radio and Wireless Symposium (RWS), IEEE, 2015. Google Scholar
10. Glazov, M. M. and S. D. Ganichev, "High frequency electric field induced nonlinear effects in graphene," Physics Reports, Vol. 535, No. 3, 101-138, 2014.
doi:10.1016/j.physrep.2013.10.003 Google Scholar
11. Mikhailov, S. A., "Non-linear graphene optics for terahertz applications," Microelectronics J., Vol. 40, No. 4-5, 712-715, 2009.
doi:10.1016/j.mejo.2008.11.042 Google Scholar
12. Ishikawa, K. L., "Nonlinear optical response of graphene in time domain," Phys. Rev. B, Vol. 82, No. 20, 201402, Nov. 2010.
doi:10.1103/PhysRevB.82.201402 Google Scholar
13. Hadarig, A. I., et al. "Experimental analysis of the high-order harmonic components generation in few-layer graphene," Applied Physics A, Vol. 118, No. 1, 83-89, 2015.
doi:10.1007/s00339-014-8739-y Google Scholar
14. Amir, F., C. Mitchell, and M. Missous, "Development of advanced Gunn diodes and Schottky multipliers for high power THz sources," 2010 8th International Conference on Advanced Semiconductor Devices & Microsystems (ASDAM), IEEE, 2010. Google Scholar
15. Ward, J. and et al, "Capability of THz sources based on Schottky diode frequency multiplier chains," 2004 IEEE MTT-S International Microwave Symposium Digest, Vol. 3, IEEE, 2004. Google Scholar
16. Feng, Z. H., et al. "High-frequency multiplier based on GaN planar Schottky barrier diodes," 2016 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AM, IEEE, 2016. Google Scholar
17. Hanson, G. W., "Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene," Journal of Applied Physics, Vol. 103, No. 6, 064302, 2008.
doi:10.1063/1.2891452 Google Scholar
18. Niu, J., M. Luo, and Q. H. Liu, "Full-wave nonlinear optical analyses of graphene-based optoelectronic devices," 2015 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), IEEE, 2015. Google Scholar
19. Hotopan, G. R., S. Ver-Hoeye, C. Vazquez-Antuna, R. Camblor-Diaz, M. Fernandez-Garcia, F. Las Heras Andres, P. Alvarez, and R. Menendez, "Millimeter wave microstrip mixer based on graphene," Progress In Electromagnetics Research, Vol. 118, 57-69, 2011.
doi:10.2528/PIER11051709 Google Scholar
20. Yang, K., S. Arezoomandan, and B. Sensale-Rodriguez, "The linear and nonlinear THz properties of graphene," International Journal of Terahertz Science and Technology, Vol. 6, No. 4, 223-233, 2013. Google Scholar
21. Hendry, E., P. J. Hale, J. Moger, et al. "Coherent nonlinear optical response of graphene," Phys. Rev. Lett., Vol. 105, 097401, 2010.
doi:10.1103/PhysRevLett.105.097401 Google Scholar
22. Graphenea LTD "MikeletegiPasealekua,", 83, 20009 Donostia, Gipuzkoa, Spain. Google Scholar
23. Zhao, W., M. Fang, F. Wu, H. Wu, L. Wang, and G. Chen, "Preparation of graphene by exfoliation of graphite using wet ball milling," J. Mater. Chem., Vol. 20, No. 28, 5817, 2010.
doi:10.1039/c0jm01354d Google Scholar
24. Takatoshi, Y., K. Jaeho, I. Masatou, and H. Masataka, "Low-temperature graphene synthesis using microwave plasma CVD," J. Phys. D. Appl. Phys., Vol. 46, No. 6, 63001, 2013.
doi:10.1088/0022-3727/46/6/063001 Google Scholar
25. Falcao-Filho, E. L., et al. "Analytic scaling analysis of high harmonic generation conversion efficiency," Optics Express, Vol. 17, No. 13, 11217-11229, 2009.
doi:10.1364/OE.17.011217 Google Scholar