Vol. 77
Latest Volume
All Volumes
PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-09-05
Wide-Angle Frequency Selective Surface with Ultra-Wideband Response for Aircraft Stealth Designs
By
Progress In Electromagnetics Research C, Vol. 77, 167-173, 2017
Abstract
An ultra-wideband frequency selective surface (FSS) for wide incident angles is proposed. Its -3dB bandwidth is from 3.49GHz to 12.13GHz, and the fractional bandwidth exceeds 110%. Some parasitic patches are appended to reduce the deviation of resonant frequency under wide-angle incidence. The proposed FSS exhibits an improved stability when the incident angles are in the range from 0° to 60°. The relative simulated and measured results are provided to validate its effectiveness.
Citation
Boyu Hua, Xiaochun Liu, Xiaoxiang He, and Yang Yang, "Wide-Angle Frequency Selective Surface with Ultra-Wideband Response for Aircraft Stealth Designs," Progress In Electromagnetics Research C, Vol. 77, 167-173, 2017.
doi:10.2528/PIERC17080401
References

1. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, New York, 2000.
doi:10.1002/0471723770

2. Baskey, H. B. and M. J. Akhtar, "Design of flexible hybrid nanocomposite structure based on frequency selective surface for wideband radar cross section reduction," IEEE Trans. Microw. Theory, Vol. 65, No. 6, 2019-2029, 2017.
doi:10.1109/TMTT.2017.2655045

3. Zhang, J. C., Y. Z. Yin, and J. P. Ma, "Design of narrow band-pass frequency selective surfaces for millimeter wave applications," Progress In Electromagnetics Research, Vol. 96, No. 4, 287-298, 2009.
doi:10.2528/PIER09081702

4. Sharifian, M. and M. Mollaei, "Narrow-band configurable polarization rotator using frequency selective surface based on circular substrate integrated waveguide cavity," IEEE Antennas & Wireless Propagation Letters, Vol. 16, 1923-1926, 2017.

5. Lorenzo, J., A. Lazaro, D. Girbau, R. Villarino, and E. Gil, "Analysis of on-body transponders based on frequency selective surfaces," Progress In Electromagnetics Research, Vol. 157, 133-143, 2016.
doi:10.2528/PIER16082501

6. Tiemann, J., F. Schweikowski, and C. Wietfeld, "Design of an UWB indoor-positioning system for UAV navigation in GNSS-denied environments," IEEE International Conference on Indoor Positioning and Indoor Navigation, 2015.

7. Izabela, G., L. Vinay, G. Leonid, A. Donald, and B. Frank, "Analyses and simulations for aeronautical mobile airport communications system," Integrated Communications Navigation and Surveillance, 2016.

8. Syed, I. S., Y. Ranga, and L. Matekovits, "A single-layer frequency selective surface for ultrawideband electromagnetic shielding," IEEE Trans. Electromagn. Compat., Vol. 56, No. 6, 1404-1411, 2014.
doi:10.1109/TEMC.2014.2316288

9. Wang, J., G. Guo, and H. Zheng, "Characteristic analysis of nose radome by aperture-integration and surface-integration method," IEEE International Workshop on Microwave and Millimeter Wave Circuits and System Technology, 2012.

10. Zhou, H., S. B. Qu, and J. F. Wang, "Ultra-wideband frequency selective surface," Electron. Lett., Vol. 48, No. 1, 11-13, 2012.
doi:10.1049/el.2011.3271

11. Kesavan, A., R. Karimian, and T. A. Denidni, "A novel wideband frequency selective surface for millimeter-wave applications," IEEE Antennas & Wireless Propagation Letters, Vol. 15, 1711-1714, 2016.
doi:10.1109/LAWP.2016.2528221

12. Ramprabhu, S., M. Balaji, and K. Malathi, "Polarization-independent single-layer ultra-wideband frequency-selective surface," Journal of Electromagnetic Waves and Applications, Vol. 9, No. 1, 93-97, 2015.

13. Li, D., T. W. Li, and R. Hao, "A low-profile broadband bandpass frequency selective surface with two rapid band edges for 5G near-field applications," IEEE Trans. Electromagn. Compat., Vol. 59, No. 2, 670-676, 2017.
doi:10.1109/TEMC.2016.2634279

14. Al-Joumayly, M. A. and N. Behdad, "A generalized method for synthesizing low-profile, bandpass frequency selective surfaces with non-resonant constituting elements," IEEE Trans. Antennas Propag., Vol. 58, No. 12, 4033-4041, 2010.
doi:10.1109/TAP.2010.2078474