1. Bolomey, J. C., "Recent european developments in active microwave imaging for industrial, scientific, and medical applications," IEEE T. Microw. Theory, Vol. 37, 2109-2117, Dec. 1989.
doi:10.1109/22.44129 Google Scholar
2. Caorsi, S., M. Donelli, A. Lommi, and A. Massa, "Location and imaging of two-dimensional scatterers by using a particle swarm algorithm," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 4, 481-494, 2004.
doi:10.1163/156939304774113089 Google Scholar
3. Craddock, J., M. Donelli, D. Gibbins, and M. Sarafianou, "A three-dimensional time domain microwave imaging method for breast cancer detection based on an evolutionary algorithm," Progress In Electromagnetics Research M, Vol. 18, 179-195, 2012. Google Scholar
4. Rocca, P., M. Donelli, G. L. Gragnani, and A. Massa, "Iterative multi-resolution retrieval of nonmeasurable equivalent currents for the imaging of dielectric objects," Inverse Problems, Vol. 25, No. 5, 2009.
doi:10.1088/0266-5611/25/5/055004 Google Scholar
5. Franceschini, G., M. Donelli, R. Azaro, and A. Massa, "Inversion of phaseless total field data using a two-step strategy based on the iterative multiscalling approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 12, 3527-3539, Dec. 2006.
doi:10.1109/TGRS.2006.881753 Google Scholar
6., National Breast Cancer Coalition (NBCC), URL: http://www.stopbreast- cancer.org, 2014.
7. Yujiri, L., "Passive millimeter wave imaging," IEEE MTT-S International Microwave symposium, Vol. 4, 98-101, Jun. 2006. Google Scholar
8. Hu, C., L. Liu, and B. Sun, "Compact representation and panoramic representation for capsule endoscope images," Int. J. Inf. Acquisit., Vol. 6, 257-268, 2009.
doi:10.1142/S0219878909001989 Google Scholar
9. Hwang, S. and M. Emre Celebi, "Polyp detection in wireless capsule endoscopy videos based on image segmentation and geometric feature," Proc. 2010 IEEE Int. Conf. Acoust. Speech Signal Process., 678-681, Mar. 2010.
doi:10.1109/ICASSP.2010.5495103 Google Scholar
10. Gono, K., "Multifunctional endoscopic imaging system for support of early cancer diagnosis," IEEE J. Sel. Topics Quant. Electron, Vol. 14, No. 1, 62-69, Jan. 2008.
doi:10.1109/JSTQE.2007.913966 Google Scholar
11. Gono, K., T. Obi, M. Yamaguchi, N. Ohyama, H. Machida, Y. Sano, S. Yoshida, Y. Hamamoto, and T. Endo, "Appearance of endhanced tissue features in narrow band endoscopic imaging," J. Biomed. Opt., Vol. 9, 568-577, May 2004.
doi:10.1117/1.1695563 Google Scholar
12. Gono, K., K. Yamazaki, N. Doguchi, T. Nonami, T. Obi, M. Yamagichi, N. Ohyama, H. Machida, Y. Saono, S. Yoshida, Y. Hamamoto, and T. Endo, "Endoscopic observation of tissue by narrow band illumination," Opt. Rev., Vol. 10, 211-215, 2003.
doi:10.1007/s10043-003-0211-8 Google Scholar
13. Atasoy, S., B. Glocker, S. Giannarou, D. Mateus, A.Meining, G. Yang, and N. Navab, "Probabilistic region matching in narrow-band endoscopy for targeted optical biopsy," Proc. MICCAI, 499-506, 2009. Google Scholar
14. Li, B. and M. Q.-H. Meng, "Tumor recognition in wireless capsule endoscopy images using textural features and SVM-based feature selection," IEEE Trans. on Information Technology in Biomedicine, Vol. 16, No. 3, 323-329, May 2012.
doi:10.1109/TITB.2012.2185807 Google Scholar
15. Li, B. and M. Q.-H. Meng, "Computer aided detection of bleeding regions in capsule endoscopy images," IEEE Trans. Biomed. Eng., Vol. 56, No. 4, 1032-1039, Apr. 2009.
doi:10.1109/TBME.2008.2010526 Google Scholar
16. Li, B. and M. Q.-H. Meng, "Texture analysis for ulcer detection in capsule endoscopy images," Image Vis. Comput., Vol. 27, No. 9, 1336-1342, Aug. 2009.
doi:10.1016/j.imavis.2008.12.003 Google Scholar
17. Li, B. and M. Q.-H. Meng, "Computer-based detection of bleeding and ulcer in wireless capsule endoscopy images by chromaticity moments," Comput. Bilo. Med., Vol. 39, No. 2, 141-147, Feb. 2009.
doi:10.1016/j.compbiomed.2008.11.007 Google Scholar
18. Wang, L., Support Vector Machines: Theory and Applications, Springer-Verlag, New York, 2005.
doi:10.1007/b95439
19. Jain, A. K. and D. Zongker, "Feature selection, evaluation, application, and small sample performance," IEEE Trans. PAMI, Vol. 19, No. 2, 153-158, Feb. 1997.
doi:10.1109/34.574797 Google Scholar
20. Dash, M. and H. Liu, "Feature selection for classification," Intell. Data Anal., Vol. 1, 131-156, 1997.
doi:10.1016/S1088-467X(97)00008-5 Google Scholar
21. Guyon, I., J. Westion, S. Barnhill, and V. Vapnik, "Gene selection for cancer classification using support vector machines," Mach. Learn., Vol. 46, 389-422, 2002.
doi:10.1023/A:1012487302797 Google Scholar
22. Wang, F. and Y. Zhang, "A real-time through-wall detection based on support vector machine," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 1, 75-84, 2011.
doi:10.1163/156939311793898396 Google Scholar
23. Vapnik, V., The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995.
doi:10.1007/978-1-4757-2440-0
24. Miteran, J., S. Bouillant, and E. Bourennane, "SVM approximation for real-time image segmentation by using an improved hyperrectangles-based method," Real-Time Imaging, Vol. 9, 179-188, 2003.
doi:10.1016/S1077-2014(03)00035-4 Google Scholar
25. Vapnik, V., Statistical Learning Theory, J. Wiley, New York, 1998.
26. Steinwart, I., "On the optimal parameter choice for v-support vector machines," IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 25, No. 10, 1274-1284, 2003.
doi:10.1109/TPAMI.2003.1233901 Google Scholar
27. Mangasarian, O. and D. Musicant, "Lagrangian support vector machines," Journal of Machine Learning Research, Vol. 1, 161-177, 2001. Google Scholar
28. Salmon, N. A., "Polarimetric scene simulation in millimeter-wave radiometric imaging," Proc. SPIE, 260-269, Feb. 2004.
doi:10.1117/12.562206 Google Scholar
29. Chapelle, O., P. Haffner, and V. N. Vapnik, "Support vector machines for histogram-based image classification," IEEE Transactions on Neural Networks, Vol. 10, No. 5, 1055-1064, May 1999.
doi:10.1109/72.788646 Google Scholar
30. Fetterman, M. R., J. Dougherty, W. L. Kiser, and Jr., "Scene simulation of mm-wave images," IEEE 2007 AP-S Int. Symposium, 1493-1496, Dec. 2007. Google Scholar
31. Gurel, L. and U. Oguz, "Three-dimensional FDTD modeling of a ground-penetrating radar," IEEE Trans. Geosci. Remote Sens., Vol. 38, 1513-1520, Apr. 2008. Google Scholar
32. Wu, S. Y., Y. Y. Xu, and J. Chen, "Through-wall shape estimation based on UWB-SP radar," IEEE Geosci. Remote Sens. Letters, Vol. 10, 1234-1238, May 2013.
doi:10.1109/LGRS.2012.2237012 Google Scholar
33. Dehmollaian, M., "Through-wall shape reconstruction and wall parameters estimation using differential evolution," IEEE Geosci. Remote Sens. Letters, Vol. 8, 201-205, Feb. 2011.
doi:10.1109/LGRS.2010.2056912 Google Scholar
34. Cheng, Z., W. Ji, and L. Hao, "Imaging algorithm for synthetic aperture interferometric radiometer in near field," Science China Technological Sciences, Vol. 54, 2224-2231, Aug. 2011.
doi:10.1007/s11431-011-4323-2 Google Scholar
35. Lei, W., C. Huang, and Y. Su, "A real-time BP imaging algorithm in SPR application," IEEE International Geoscience and Remote Sensing Symposium, 1734-1737, 2005. Google Scholar
36. Ahmad, F., M. Amin, and S. Kassam, "A beamforming approach to stepped-frequency synthetic aperture through-the-wall radar imaging," IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 24-27, 2005.
doi:10.1109/CAMAP.2005.1574174 Google Scholar