1. Li, W. and J. Valentine, "Metamaterial perfect absorber based hot electron photodetection," Nano Lett., Vol. 14, 3510-3514, 2014.
doi:10.1021/nl501090w Google Scholar
2. Song, Y. M., Y. Xie, V. Malyarchuk, J. L. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, and R. Li, "Digital cameras with designs inspired by the arthropod eye," Nature, Vol. 497, 95-99, 2013.
doi:10.1038/nature12083 Google Scholar
3. Yin, X., L. Chen, and X. Li, "Ultra-broadband super light absorber based on multi-sized tapered hyperbolic metamaterial waveguide arrays," J. Lightwave Technol., Vol. 33, 3704-3710, 2015.
doi:10.1109/JLT.2015.2453995 Google Scholar
4. Xiao, S., T. Wang, Y. Liu, C. Xu, and X. Yan, "Tunable light trapping and absorption enhancement with graphene ring arrays," Phys. Chem. Chem. Phys., Vol. 18, 26661-26669, 2016.
doi:10.1039/C6CP03731C Google Scholar
5. El-Toukhy, Y. M., M. Hussein, M. F. O. Hameed, and S. S. A. Obayya, "Characterization of asymmetric tapered dipole nanoantenna for energy harvesting applications," Plasmonics, Vol. 12, 1-8, 2017.
doi:10.1007/s11468-016-0221-6 Google Scholar
6. El-Toukhy, Y. M., M. F. O. Hameed, M. Hussein, and S. S. A. Obayya, "Tapered plasmonic nanoantennas for energy harvesting applications," Nanoplasmonics — Fundamentals and Applications, 2017, DOI: 10.5772/67418. Google Scholar
7. Ni, X., Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, "An ultrathin invisibility skin cloak for visible light," Science, Vol. 349, 1310-1314, 2015.
doi:10.1126/science.aac9411 Google Scholar
8. Chen, Y., P. Han, and X.-C. Zhang, "Tunable broadband antireflection structures for silicon at terahertz frequency," Appl. Phys. Lett., Vol. 94, 041106, 2009.
doi:10.1063/1.3075059 Google Scholar
9. Kim, D.-H., D.-S. Kim, S. Hwang, and J.-H. Jang, "Surface relief structures for a flexible broadband terahertz absorber," Opt. Express, Vol. 20, 16815-16822, 2012.
doi:10.1364/OE.20.016815 Google Scholar
10. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402 Google Scholar
11. Watts, C. M., X. L. Liu, and W. J. Padilla, "Metamaterial electromagnetic wave absorbers," Adv. Mater., Vol. 24, OP98-OP120, 2012. Google Scholar
12. El-Aasser, M. A., "Design optimization of nanostrip metamaterial perfect absorbers," J. Nanophotonics, Vol. 8, 11, 2014.
doi:10.1117/1.JNP.8.083085 Google Scholar
13. Hedayati, M. K., M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, "Design of a perfect black absorber at visible frequencies using plasmonic metamaterials," Adv. Mater., Vol. 23, 5410, 2011.
doi:10.1002/adma.201102646 Google Scholar
14. Hao, J., J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, "High performance optical absorber based on a plasmonic metamaterial," Appl. Phys. Lett., Vol. 96, 251104, 2010.
doi:10.1063/1.3442904 Google Scholar
15. Peng, X., B. Wang, S. Lai, D. Zhang, and J. Teng, "Ultrathin multi-band planar metamaterial absorber based on standing wave resonances," Opt. Express, Vol. 20, 27756-27765, 2012.
doi:10.1364/OE.20.027756 Google Scholar
16. Grant, J., Y. Ma, S. Saha, L. B. Lok, A. Khalid, and D. R. S. Cumming, "Polarization insensitive terahertz metamaterial absorber," Opt. Lett., Vol. 36, 1524-1526, 2011.
doi:10.1364/OL.36.001524 Google Scholar
17. Zhu, P. and L. J. Guo, "High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack," Appl. Phys. Lett., Vol. 101, 241116, 2012.
doi:10.1063/1.4771994 Google Scholar
18. Cui, Y., K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, "Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab," Nano Lett., Vol. 12, 1443-1447, 2012.
doi:10.1021/nl204118h Google Scholar
19. Azad, A. K., W. J. Kortkamp, M. Sykora, N. R. Weissebernstein, T. S. Luk, and A. J. Taylor, "Metasurface broadband solar absorber," Sci. Rep., Vol. 6, 20347, 2016.
doi:10.1038/srep20347 Google Scholar
20. Koechlin, C., P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J.-L. Pelouard, and R. Haidar, "Total routing and absorption of photons in dual color plasmonic antennas," Appl. Phys. Lett., Vol. 99, 241104, 2011.
doi:10.1063/1.3670051 Google Scholar
21. Cui, Y., J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, "A thin film broadband absorber based on multi-sized nanoantennas," Appl. Phys. Lett., Vol. 99, 253101, 2011.
doi:10.1063/1.3672002 Google Scholar
22. Bouchon, P., C. Koechlin, F. Pardo, R. Ha¨ıdar, and J. L. Pelouard, "Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas," Opt. Lett., Vol. 37, 1038-1040, 2012.
doi:10.1364/OL.37.001038 Google Scholar
23. Feng, R., J. Qiu, L. Liu, W. Ding, and L. Chen, "Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling," Opt. Express, Vol. 22, A1713-A1724, 2014.
doi:10.1364/OE.22.0A1713 Google Scholar
24. Guo, W., Y. Liu, and T. Han, "Ultra-broadband infrared metasurface absorber," Opt. Express, Vol. 24, 20586-20592, 2016.
doi:10.1364/OE.24.020586 Google Scholar
25. Ye, Y. Q., Y. Jin, and S. L. He, "Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime," JOSA B, Vol. 27, 498-504, 2010.
doi:10.1364/JOSAB.27.000498 Google Scholar
26. Amin, M., M. Farhat, and H. Bagci, "An ultra-broadband multilayered graphene absorber," Opt. Express, Vol. 21, 29938-29948, 2013.
doi:10.1364/OE.21.029938 Google Scholar
27. Zhu, J., Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, "Ultra-broadband terahertz metamaterial absorber," Appl. Phys. Lett., Vol. 105, 021102, 2014.
doi:10.1063/1.4890521 Google Scholar
28. Liu, S., H. Chen, and T. J. Cui, "A broadband terahertz absorber using multi-layer stacked bars," Appl. Phys. Lett., Vol. 106, 151601, 2015.
doi:10.1063/1.4918289 Google Scholar
29. Peng, Y., X. Zang, Y. Zhu, C. Shi, L. Chen, B. Cai, and S. Zhuang, "Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a bouble-layered grating structure," Opt. Express, Vol. 23, 2032-2039, 2015.
doi:10.1364/OE.23.002032 Google Scholar
30. Li, S., J. Gao, X. Cao, W. Li, Z. Zhang, and D. Zhang, "Wideband, thin and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances," J. Appl. Phys., Vol. 116, 043710, 2014.
doi:10.1063/1.4891716 Google Scholar
31. Yang, J. and Z. X. Shen, "A thin and broadband absorber using double-square loops," IEEE Antennas Wireless Propag. Lett., Vol. 6, 388-391, 2007.
doi:10.1109/LAWP.2007.903496 Google Scholar
32. Li, M., S. Xiao, Y. Y. Bai, and B. Z. Wang, "An ultrathin and broadband radar absorber using resistive FSS," IEEE Antennas Wireless Propag. Lett., Vol. 11, 748-751, 2012.
doi:10.1109/LAWP.2012.2206361 Google Scholar
33. Yoo, Y. J., Y. J. Kim, P. V. Tuong, J. Y. Rhee, K.W. Kim, W. H. Jang, Y. H. Kim, H. Cheong, and Y. Lee, "Polarization-independent dual-band perfect absorber utilizing multiple magnetic resonances," Opt. Express, Vol. 21, 32484-32490, 2013.
doi:10.1364/OE.21.032484 Google Scholar
34. Jiang, T., J. Zhao, and Y. Feng, "Stopping light by an air waveguide with anisotropic metamaterial cladding," Opt. Express, Vol. 17, 170-177, 2009.
doi:10.1364/OE.17.000170 Google Scholar
35. Yin, X., C. Long, J. Li, H. Zhu, L. Chen, J. Guan, and X. Li, "Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays," Sci. Rep., Vol. 5, 15367, 2015.
doi:10.1038/srep15367 Google Scholar
36. Ding, F., Y. Cui, X. Ge, Y. Jin, and S. He, "Ultra-broadband microwave metamaterial absorber," Appl. Phys. Lett., Vol. 100, 103506, 2012.
doi:10.1063/1.3692178 Google Scholar
37. Pang, Y., H. Cheng, Y. Zhou, and J. Wang, "Double-corrugated metamaterial surfaces for broadband microwave absorption," J. Appl. Phys., Vol. 113, 084907, 2013.
doi:10.1063/1.4793631 Google Scholar
38. Long, C., S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, "Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode," Sci. Rep., Vol. 6, 21431, 2016.
doi:10.1038/srep21431 Google Scholar
39. Tassin, P., T. Koschny, M. Kafesaki, and C. M. Soukoulis, "A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics," Nature Photon., Vol. 6, 259-264, 2012.
doi:10.1038/nphoton.2012.27 Google Scholar