1. Zhou, C., "Physics-based ultra-wideband channel modeling for tunnel/mining environments," 2015 IEEE Radio and Wireless Symposium (RWS), 92-94, Jan. 2015.
doi:10.1109/RWS.2015.7129760 Google Scholar
2. "The mine improvement and new emergency response act of 2006 (MINER Act),", Jun. 2006, [Online], Available: http://www.msha.gov/MinerAct/MinerActSingleSource.asp. Google Scholar
3. Emslie, A., R. Lagace, and P. Strong, "Theory of the propagation of UHF radio waves in coal mine tunnels," IEEE Transactions on Antennas and Propagation, Vol. 23, No. 2, 192-205, 1975.
doi:10.1109/TAP.1975.1141041 Google Scholar
4. Mahmoud, S. and J. Wait, "Geometrical optical approach for electromagnetic wave propagation in rectangular mine tunnels," Radio Science, Vol. 9, No. 12, 1147-1158, 1974.
doi:10.1029/RS009i012p01147 Google Scholar
5. Lienard, M. and P. Degauque, "Natural wave propagation in mine environments," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 9, 1326-1339, 2000.
doi:10.1109/8.898765 Google Scholar
6. Zhang, Y. P., G. X. Zheng, and J. Sheng, "Radio propagation at 900MHz in underground coal mines," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 5, 757-762, 2001.
doi:10.1109/8.929630 Google Scholar
7. Sun, Z. and I. F. Akyildiz, "Channel modeling and analysis for wireless networks in underground mines and road tunnels," IEEE Transactions on Communications, Vol. 58, No. 6, 1758-1768, 2010.
doi:10.1109/TCOMM.2010.06.080353 Google Scholar
8. Zhou, C., "Ray tracing and modal methods for modeling radio propagation in tunnels with rough walls," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 5, 2624-2634, 2017.
doi:10.1109/TAP.2017.2677398 Google Scholar
9. Goddard, A. E., "Radio propagation measurements in coal mines at UHF and VHF," Proc. Through-Earth Electromagn., 15-17, 1973. Google Scholar
10. Boutin, M., A. Benzakour, C. L. Despins, and S. Affes, "Radio wave characterization and modeling in underground mine tunnels," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 2, 540-549, 2008.
doi:10.1109/TAP.2007.913144 Google Scholar
11. Boutin, M., S. Affes, C. Despins, and T. Denidni, "Statistical modelling of a radio propagation channel in an underground mine at 2.4 and 5.8GHz," IEEE 61st Vehicular Technology Conference, VTC 2005-Spring, Vol. 1, 78-81, 2005.
doi:10.1109/VETECS.2005.1543253 Google Scholar
12. Nerguizian, C., C. L. Despins, S. Aff`es, and M. Djadel, "Radio channel characterization of an underground mine at 2.4GHz," IEEE Transactions on Wireless Communications, Vol. 4, No. 5, 2441-2453, 2005.
doi:10.1109/TWC.2005.853899 Google Scholar
13. Qaraqe, K. A., S. Yarkan, S. G¨uzelgoz, and H. Arslan, "Statistical wireless channel propagation characteristics in underground mines at 900MHz: A comparative analysis with indoor channels," Ad Hoc Networks, Vol. 11, No. 4, 1472-1483, 2013.
doi:10.1016/j.adhoc.2011.01.015 Google Scholar
14. Yarkan, S. and H. Arslan, "Statistical wireless channel propagation characteristics in underground mines at 900 MHz," IEEE Military Communications Conference (MILCOM07), 1-7, IEEE, 2007. Google Scholar
15. Chehri, A., P. Fortier, and P. M. Tardif, "Large-scale fading and time dispersion parameters of UWB channel in underground mines," International Journal of Antennas and Propagation, Vol. 2008, 2008.
doi:10.1155/2008/806326 Google Scholar
16. Qiu, R. C., C. Zhou, and Q. Liu, "Physics-based pulse distortion for ultra-wideband signals," IEEE Transactions on Vehicular Technology, Vol. 54, No. 5, 1546-1555, 2005.
doi:10.1109/TVT.2005.854033 Google Scholar
17. Zhou, C. and R. C. Qiu, "Pulse distortion caused by cylinder diffraction and its impact on uwb communications," IEEE Transactions on Vehicular Technology, Vol. 56, No. 4, 2385-2391, 2007.
doi:10.1109/TVT.2007.897640 Google Scholar
18. Valenzuela, R. A., "A ray tracing approach to predicting indoor wireless transmission," IEEE Vehicular Technology Conference, 214-218, 1993. Google Scholar
19. Uchida, K., C.-K. Lee, T. Matsunaga, T. Imai, and T. Fujii, "A ray tracing method for evaluating field distribution in tunnels," Electronics and Communications in Japan (Part I: Communications), Vol. 83, No. 10, 11-18, 2000.
doi:10.1002/(SICI)1520-6424(200010)83:10<11::AID-ECJA2>3.0.CO;2-N Google Scholar
20. Zhou, C., J. Waynert, T. Plass, and R. Jacksha, "Attenuation constants of radio waves in lossywalled rectangular waveguides," Progress In Electromagnetics Research, Vol. 142, 75-105, 2013.
doi:10.2528/PIER13061709 Google Scholar
21. Porrat, D. and D. C. Cox, "UHF propagation in indoor hallways," IEEE Transactions on Wireless Communications, Vol. 3, No. 4, 1188-1198, 2004.
doi:10.1109/TWC.2004.828023 Google Scholar
22. Kermani, M. H. and M. Kamarei, "A ray-tracing method for predicting delay spread in tunnel environments," IEEE International Conference on Personal Wireless Communications, 538-542, 2000. Google Scholar
23. Chen, S.-H. and S.-K. Jeng, "SBR image approach for radio wave propagation in tunnels with and without traffic," IEEE Transactions on Vehicular Technology, Vol. 45, No. 3, 570-578, 1996.
doi:10.1109/25.533772 Google Scholar
24. Wang, T.-S. and C.-F. Yang, "Simulations and measurements of wave propagations in curved road tunnels for signals from gsm base stations," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 9, 2577-2584, 2006.
doi:10.1109/TAP.2006.880674 Google Scholar
25. Marcatili, E. and R. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell System Technical Journal, Vol. 43, No. 4, 1783-1809, 1964.
doi:10.1002/j.1538-7305.1964.tb04108.x Google Scholar
26. Laakmann, K. D. and W. H. Steier, "Waveguides: Characteristic modes of hollow rectangular dielectric waveguides," Applied Optics, Vol. 15, No. 5, 1334-1340, 1976.
doi:10.1364/AO.15.001334 Google Scholar
27. Molisch, A. F., Wireless Communications, John Wiley Sons, 2010.
28. Zhou, C., N. Guo, and R. C. Qiu, "Time-reversed ultra-wideband (UWB) multiple input multiple output (MIMO) based on measured spatial channels," IEEE Transactions on Vehicular Technology, Vol. 58, No. 6, 2884-2898, 2009.
doi:10.1109/TVT.2008.2012109 Google Scholar
29. Garcia-Pardo, C., M. Lienard, P. Degauque, J.-M. Molina-Garcia-Pardo, and L. Juan-Llacer, "Experimental investigation on channel characteristics in tunnel environment for time reversal ultra wide band techniques," Radio Science, Vol. 47, No. 1, 2012.
doi:10.1029/2011RS004893 Google Scholar
30. Zhou, C. and J. Waynert, "The equivalence of the ray tracing and modal methods for modeling radio propagation in tunnels," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 615-618, 2013. Google Scholar
31. Zhou, C. and R. Jacksha, "Modeling and measurement of radio propagation in tunnel environments," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 141-144, 2016. Google Scholar
32. Cramer, R., R. Scholtz, M. Z. Win, et al. "Evaluation of an ultra-wide-band propagation channel," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 5, 561-570, 2002.
doi:10.1109/TAP.2002.1011221 Google Scholar
33. Rappaport, T. S., Wireless Communications: Principles and Practice, Prentice Hall PTR New Jersey, 1996.
34. Dudley, D., M. Lienard, S. Mahmoud, and P. Degauque, "Wireless propagation in tunnels," IEEE Antennas and Propagation Magazine, Vol. 49, No. 2, 11-26, Apr. 2007.
doi:10.1109/MAP.2007.376637 Google Scholar
35. Zhou, C., T. Plass, R. Jacksha, and J. Waynert, "Measurement of RF propagation in mines and tunnels," IEEE Antennas and Propagation Magazine, Vol. 57, No. 4, 88-102, 2014.
doi:10.1109/MAP.2015.2453881 Google Scholar
36. Plass, T., R. Jacksha, J. Waynert, and C. Zhou, "Measurement of RF propagation in tunnels," IEEE International Symposium on Antennas and Propagation (APS2013), 1604-1605, Orlando, FL, USA, Jul. 2013. Google Scholar
37. Molisch, A. F., D. Cassioli, C.-C. Chong, S. Emami, A. Fort, B. Kannan, J. Karedal, J. Kunisch, H. G. Schantz, K. Siwiak, et al. "A comprehensive standardized model for ultrawideband propagation channels," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 11, 3151-3166, 2006.
doi:10.1109/TAP.2006.883983 Google Scholar
38. Molina-Garcıa-Pardo, J.-M., M. Lienard, P. Degauque, C. Garcıa-Pardo, and L. Juan-Llacer, "MIMO channel capacity with polarization diversity in arched tunnels," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1186-1189, 2009.
doi:10.1109/LAWP.2009.2035299 Google Scholar
39. Sood, N., L. Liang, S. V. Hum, and C. D. Sarris, "Ray-tracing based modeling of ultrawideband pulse propagation in railway tunnels," IEEE International Symposium on Antennas and Propagation (APSURSI), 2383-2386, IEEE, 2011.
doi:10.1109/APS.2011.5997000 Google Scholar