Vol. 79
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-11-13
Design of RF Sensor for Simultaneous Detection of Complex Permeability and Permittivity of Unknown Sample
By
Progress In Electromagnetics Research C, Vol. 79, 159-173, 2017
Abstract
In this paper, a novel microwave planar resonant sensor is designed and developed for simultaneous detection of permittivity and permeability of an unknown sample using a nondestructive technique. It takes advantage of two-pole filter topology where the interdigitated capacitor (IDC) and spiral inductor are used for placement of a sample with significant relative permittivity and permeability values. The developed sensor model has the potential for differentiating permittivity and permeability based on the odd mode and even mode resonant frequencies. It operates in the ISM (industrial, scientific and medical) frequency band of 2.2-2.8 GHz. The sensor is designed using the full wave electromagnetic solver, HFSS 13.0, and an empirical model is developed for the accurate calculation of complex permittivity and permeability of an unknown sample in terms of shifts in the resonant frequencies and transmission coefficients (S21) under loaded condition. The designed resonant sensor of size 44x24 mm2 is fabricated on a 1.6 mm FR4 substrate and tested, and corresponding numerical model is experimentally verified for various samples (e.g., magnetite, soft cobalt steel (SAE 1018), ferrite core, rubber, plastic and wood). Experimentally, it is found that complex permeability and permittivity measurement is possible with an average error of 2%.
Citation
Pratik Porwal, Syed Azeemuddin, Prabhakar Bhimalapuram, and Tapan Kumar Sau, "Design of RF Sensor for Simultaneous Detection of Complex Permeability and Permittivity of Unknown Sample," Progress In Electromagnetics Research C, Vol. 79, 159-173, 2017.
doi:10.2528/PIERC17090401
References

1. Turi, E., Thermal Characterization of Polymeric Materials, Elsevier, 2012.

2. Petcharoen, K. and A. Sirivat, "Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method," Materials Science and Engineering: B, Vol. 177, No. 5, 421-427, 2012.
doi:10.1016/j.mseb.2012.01.003        Google Scholar

3. Ghosh Chaudhuri, R. and S. Paria, "Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications," Chemical Reviews, Vol. 112, No. 4, 2373-2433, 2011.
doi:10.1021/cr100449n        Google Scholar

4. Kim, J., A. Babajanyan, A. Hovsepyan, K. Lee, and B. Friedman, "Microwave dielectric resonator biosensor for aqueous glucose solution," Review of Scientific Instruments, Vol. 79, No. 8, 086107, 2008.
doi:10.1063/1.2968115        Google Scholar

5. Kim, Y.-I., Y. Park, and H. K. Baik, "Development of LC resonator for label-free biomolecule detection," Sensors and Actuators A: Physical, Vol. 143, No. 2, 279-285, 2008.
doi:10.1016/j.sna.2007.11.014        Google Scholar

6. Chitty, G. W., R. H. Morrison, Jr., E. O. Olsen, J. G. Panagou, and P. M. Zavracky, "Resonant sensor and method of making same,", US Patent 4,764,244, August 16, 1988.        Google Scholar

7. Akhter, Z. and M. J. Akhtar, "Free-space time domain position insensitive technique for simultaneous measurement of complex permittivity and thickness of lossy dielectric samples," IEEE Transactions on Instrumentation and Measurement, Vol. 65, No. 10, 2394-2405, 2016.
doi:10.1109/TIM.2016.2581398        Google Scholar

8. Zinal, S. and G. Boeck, "Complex permittivity measurements using TE/sub 11p/modes in circular cylindrical cavities," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 6, 1870-1874, 2005.
doi:10.1109/TMTT.2005.848094        Google Scholar

9. Ganguly, P., D. E. Senior, A. Chakrabarti, and P. V. Parimi, "Sensitive transmit receive architecture for body wearable RF plethysmography sensor," 2016 Asia-Pacific Microwave Conference (APMC), 1-4, 2016.        Google Scholar

10. Zelenchuk, D. and V. Fusco, "Dielectric characterisation of PCB materials using substrate integrated waveguide resonators," 2010 European IEEE Microwave Conference (EuMC), 1583-1586, 2010.        Google Scholar

11. Mikolaj, A. and A. F. Jacob, "Substrate integrated resonant near-field sensor for material characterization," 2010 IEEE MTT-S International Microwave Symposium Digest (MTT), 628-631, 2010.        Google Scholar

12. Lee, H.-J., J.-H. Lee, H.-S. Moon, I.-S. Jang, J.-S. Choi, J.-G. Yook, and H.-I. Jung, "A planar split-ring resonator-based microwave biosensor for label-free detection of biomolecules," Sensors and Actuators B: Chemical, Vol. 169, 26-31, 2012.
doi:10.1016/j.snb.2012.01.044        Google Scholar

13. Withayachumnankul, W., K. Jaruwongrungsee, C. Fumeaux, and D. Abbott, "Metamaterialinspired multichannel thin-film sensor," IEEE Sensors Journal, Vol. 12, No. 5, 1455-1458, 2012.
doi:10.1109/JSEN.2011.2173762        Google Scholar

14. Horestani, A. K., C. Fumeaux, S. F. Al-Sarawi, and D. Abbott, "Displacement sensor based on diamond-shaped tapered split ring resonator," IEEE Sensors Journal, Vol. 13, No. 4, 1153-1160, 2013.
doi:10.1109/JSEN.2012.2231065        Google Scholar

15. Shafi, K. M., A. K. Jha, and M. J. Akhtar, "Improved planar resonant RF sensor for retrieval of permittivity and permeability of materials," IEEE Sensors Journal, Vol. 17, No. 17, 5479-5486, 2017.
doi:10.1109/JSEN.2017.2724942        Google Scholar

16. Ebrahimi, A., W. Withayachumnankul, S. Al-Sarawi, and D. Abbott, "High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization," IEEE Sensors Journal, Vol. 14, No. 5, 1345-1351, 2014.
doi:10.1109/JSEN.2013.2295312        Google Scholar

17. Chen, C.-M., J. Xu, and Y. Yao, "SIW resonator humidity sensor based on layered black phosphorus," Electronics Letters, Vol. 53, No. 4, 249-251, 2017.
doi:10.1049/el.2016.3844        Google Scholar

18. Varshney, P. K., N. K. Tiwari, and M. J. Akhtar, "SIW cavity based compact RF sensor for testing of dielectrics and composites," 2016 IEEE MTT-S International Microwave and RF Conference (IMaRC), 1-4, 2016.        Google Scholar

19. Cui, Y., A. K. Kenworthy, M. Edidin, R. Divan, D. Rosenmann, and P. Wang, "Analyzing single giant unilamellar vesicles with a slotline-based RF nanometer sensor," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 4, 1339-1347, 2016.
doi:10.1109/TMTT.2016.2536021        Google Scholar

20. Amin, E.M. and N. C. Karmakar, "A passive RF sensor for detecting simultaneous partial discharge signals using time-frequency analysis," IEEE Sensors Journal, Vol. 16, No. 8, 2339-2348, 2016.
doi:10.1109/JSEN.2015.2507604        Google Scholar

21. Hettak, K., N. Dib, A.-F. Sheta, and S. Toutain, "A class of novel uniplanar series resonators and their implementation in original applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 9, 1270-1276, 1998.
doi:10.1109/22.709469        Google Scholar

22. Samavati, H., A. Hajimiri, A. R. Shahani, G. N. Nasserbakht, and T. H. Lee, "Fractal capacitors," IEEE Journal of Solid-State Circuits, Vol. 33, No. 12, 2035-2041, 1998.
doi:10.1109/4.735545        Google Scholar

23. Yue, C. P., C. Ryu, J. Lau, T. H. Lee, and S. S.Wong, "A physical model for planar spiral inductors on silicon," International Electron Devices Meeting, 1996, IEDM’96, 155-158, 1996.        Google Scholar

24. Chretiennot, T., D. Dubuc, and K. Grenier, "A microwave and microfluidic planar resonator for efficient and accurate complex permittivity characterization of aqueous solutions," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 2, 972-978, 2013.
doi:10.1109/TMTT.2012.2231877        Google Scholar

25. Bojanic, R., V. Milosevic, B. Jokanovic, F. Medina-Mena, and F. Mesa, "Enhanced modelling of split-ring resonators couplings in printed circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 8, 1605-1615, 2014.
doi:10.1109/TMTT.2014.2332302        Google Scholar

26. Facer, G., D. Notterman, and L. Sohn, "Dielectric spectroscopy for bioanalysis: From 40Hz to 26.5GHz in a microfabricated wave guide," Applied Physics Letters, Vol. 78, No. 7, 996-998, 2001.
doi:10.1063/1.1347020        Google Scholar

27. Altunyurt, N., M. Swaminathan, P. M. Raj, and V. Nair, "Antenna miniaturization using magnetodielectric substrates," 59th Electronic Components and Technology Conference, 2009, ECTC 2009, 801-808, 2009.
doi:10.1109/ECTC.2009.5074103        Google Scholar

28. Han, K., M. Swaminathan, P.M. Raj, H. Sharma, K. Murali, R. Tummala, and V. Nair, "Extraction of electrical properties of nanomagnetic materials through meander-shaped inductor and inverted-F antenna structures," 2012 IEEE 62nd Electronic Components and Technology Conference (ECTC), 1808-1813, 2012.
doi:10.1109/ECTC.2012.6249083        Google Scholar

29. Kim, J. W., "Development of interdigitated capacitor sensors for direct and wireless measurements of the dielectric properties of liquids,", https://repositories.lib.utexas.edu/handle/2152/10565, 2008.        Google Scholar

30. Hong, J.-S. G. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Vol. 167, John Wiley & Sons, 2004.

31. Jenei, S., B. K. Nauwelaers, and S. Decoutere, "Physics-based closed-form inductance expression for compact modeling of integrated spiral inductors," IEEE Journal of Solid-State Circuits, Vol. 37, No. 1, 77-80, 2002.
doi:10.1109/4.974547        Google Scholar

32. Asgaran, S., "New accurate physics-based closed-form expressions for compact modeling and design of on-chip spiral inductors," The 14th International Conference on IEEE Microelectronics, 2002- ICM, 247-250, 2002.        Google Scholar

33. Fooks, E. H. and R. A. Zakarevicius, Microwave Engineering Using Microstrip Circuits, Prentice- Hall, Inc., 1990.

34. Smith, D. and D. Schurig, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Physical Review Letters, Vol. 90, No. 7, 077405, 2003.
doi:10.1103/PhysRevLett.90.077405        Google Scholar

35. Ishimaru, A., Wave Propagation and Scattering in Random Media, Vol. 2, 1978.

36. Garg, R., I. Bahl, and M. Bozzi, Microstrip Lines and Slotlines, Artech House, 2013.

37. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Transactions on Microwave Theory and Techniques, Vol. 38, No. 8, 1096-1103, 1990.
doi:10.1109/22.57336        Google Scholar

38. Cuenca, J. A., K. Bugler, S. Taylor, D. Morgan, P. Williams, J. Bauer, and A. Porch, "Study of the magnetite to maghemite transition using microwave permittivity and permeability measurements," Journal of Physics: Condensed Matter, Vol. 28, No. 10, 106002, 2016.
doi:10.1088/0953-8984/28/10/106002        Google Scholar

39. Tokpanov, Y., V. Lebedev, and W. Pellico, "Measurements of magnetic permeability of soft steel at high frequencies," Proceedings of IPAC-2012, New Orleans, Louisiana, USA, 2012.        Google Scholar

40. Van Dam, R. L., J. M. Hendrickx, N. J. Cassidy, R. E. North, M. Dogan, and B. Borchers, "Effects of magnetite on high-frequency ground-penetrating radar," Geophysics, Vol. 78, No. 5, H1-H11, 2013.
doi:10.1190/geo2012-0266.1        Google Scholar

41. Kaye, G. W. C. and T. H. Laby, Tables of Physical and Chemical Constants: And Some Mathematical Functions, Longmans, Green and Company, 1921.

42. Bapna, P. and S. Joshi, "Measurement of dielectric properties of various marble stones of Mewar region of Rajasthan at X-band microwave frequencies," International Journal of Engineering and Innovative Technology (IJEIT), Vol. 2, 180-186, 2013.        Google Scholar

43., Dielectric Constant, Strength, & Loss Tangent, 2006.