1. Turi, E., Thermal Characterization of Polymeric Materials, Elsevier, 2012.
2. Petcharoen, K. and A. Sirivat, "Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method," Materials Science and Engineering: B, Vol. 177, No. 5, 421-427, 2012.
doi:10.1016/j.mseb.2012.01.003 Google Scholar
3. Ghosh Chaudhuri, R. and S. Paria, "Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications," Chemical Reviews, Vol. 112, No. 4, 2373-2433, 2011.
doi:10.1021/cr100449n Google Scholar
4. Kim, J., A. Babajanyan, A. Hovsepyan, K. Lee, and B. Friedman, "Microwave dielectric resonator biosensor for aqueous glucose solution," Review of Scientific Instruments, Vol. 79, No. 8, 086107, 2008.
doi:10.1063/1.2968115 Google Scholar
5. Kim, Y.-I., Y. Park, and H. K. Baik, "Development of LC resonator for label-free biomolecule detection," Sensors and Actuators A: Physical, Vol. 143, No. 2, 279-285, 2008.
doi:10.1016/j.sna.2007.11.014 Google Scholar
6. Chitty, G. W., R. H. Morrison, Jr., E. O. Olsen, J. G. Panagou, and P. M. Zavracky, "Resonant sensor and method of making same,", US Patent 4,764,244, August 16, 1988. Google Scholar
7. Akhter, Z. and M. J. Akhtar, "Free-space time domain position insensitive technique for simultaneous measurement of complex permittivity and thickness of lossy dielectric samples," IEEE Transactions on Instrumentation and Measurement, Vol. 65, No. 10, 2394-2405, 2016.
doi:10.1109/TIM.2016.2581398 Google Scholar
8. Zinal, S. and G. Boeck, "Complex permittivity measurements using TE/sub 11p/modes in circular cylindrical cavities," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 6, 1870-1874, 2005.
doi:10.1109/TMTT.2005.848094 Google Scholar
9. Ganguly, P., D. E. Senior, A. Chakrabarti, and P. V. Parimi, "Sensitive transmit receive architecture for body wearable RF plethysmography sensor," 2016 Asia-Pacific Microwave Conference (APMC), 1-4, 2016. Google Scholar
10. Zelenchuk, D. and V. Fusco, "Dielectric characterisation of PCB materials using substrate integrated waveguide resonators," 2010 European IEEE Microwave Conference (EuMC), 1583-1586, 2010. Google Scholar
11. Mikolaj, A. and A. F. Jacob, "Substrate integrated resonant near-field sensor for material characterization," 2010 IEEE MTT-S International Microwave Symposium Digest (MTT), 628-631, 2010. Google Scholar
12. Lee, H.-J., J.-H. Lee, H.-S. Moon, I.-S. Jang, J.-S. Choi, J.-G. Yook, and H.-I. Jung, "A planar split-ring resonator-based microwave biosensor for label-free detection of biomolecules," Sensors and Actuators B: Chemical, Vol. 169, 26-31, 2012.
doi:10.1016/j.snb.2012.01.044 Google Scholar
13. Withayachumnankul, W., K. Jaruwongrungsee, C. Fumeaux, and D. Abbott, "Metamaterialinspired multichannel thin-film sensor," IEEE Sensors Journal, Vol. 12, No. 5, 1455-1458, 2012.
doi:10.1109/JSEN.2011.2173762 Google Scholar
14. Horestani, A. K., C. Fumeaux, S. F. Al-Sarawi, and D. Abbott, "Displacement sensor based on diamond-shaped tapered split ring resonator," IEEE Sensors Journal, Vol. 13, No. 4, 1153-1160, 2013.
doi:10.1109/JSEN.2012.2231065 Google Scholar
15. Shafi, K. M., A. K. Jha, and M. J. Akhtar, "Improved planar resonant RF sensor for retrieval of permittivity and permeability of materials," IEEE Sensors Journal, Vol. 17, No. 17, 5479-5486, 2017.
doi:10.1109/JSEN.2017.2724942 Google Scholar
16. Ebrahimi, A., W. Withayachumnankul, S. Al-Sarawi, and D. Abbott, "High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization," IEEE Sensors Journal, Vol. 14, No. 5, 1345-1351, 2014.
doi:10.1109/JSEN.2013.2295312 Google Scholar
17. Chen, C.-M., J. Xu, and Y. Yao, "SIW resonator humidity sensor based on layered black phosphorus," Electronics Letters, Vol. 53, No. 4, 249-251, 2017.
doi:10.1049/el.2016.3844 Google Scholar
18. Varshney, P. K., N. K. Tiwari, and M. J. Akhtar, "SIW cavity based compact RF sensor for testing of dielectrics and composites," 2016 IEEE MTT-S International Microwave and RF Conference (IMaRC), 1-4, 2016. Google Scholar
19. Cui, Y., A. K. Kenworthy, M. Edidin, R. Divan, D. Rosenmann, and P. Wang, "Analyzing single giant unilamellar vesicles with a slotline-based RF nanometer sensor," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 4, 1339-1347, 2016.
doi:10.1109/TMTT.2016.2536021 Google Scholar
20. Amin, E.M. and N. C. Karmakar, "A passive RF sensor for detecting simultaneous partial discharge signals using time-frequency analysis," IEEE Sensors Journal, Vol. 16, No. 8, 2339-2348, 2016.
doi:10.1109/JSEN.2015.2507604 Google Scholar
21. Hettak, K., N. Dib, A.-F. Sheta, and S. Toutain, "A class of novel uniplanar series resonators and their implementation in original applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 9, 1270-1276, 1998.
doi:10.1109/22.709469 Google Scholar
22. Samavati, H., A. Hajimiri, A. R. Shahani, G. N. Nasserbakht, and T. H. Lee, "Fractal capacitors," IEEE Journal of Solid-State Circuits, Vol. 33, No. 12, 2035-2041, 1998.
doi:10.1109/4.735545 Google Scholar
23. Yue, C. P., C. Ryu, J. Lau, T. H. Lee, and S. S.Wong, "A physical model for planar spiral inductors on silicon," International Electron Devices Meeting, 1996, IEDM’96, 155-158, 1996. Google Scholar
24. Chretiennot, T., D. Dubuc, and K. Grenier, "A microwave and microfluidic planar resonator for efficient and accurate complex permittivity characterization of aqueous solutions," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 2, 972-978, 2013.
doi:10.1109/TMTT.2012.2231877 Google Scholar
25. Bojanic, R., V. Milosevic, B. Jokanovic, F. Medina-Mena, and F. Mesa, "Enhanced modelling of split-ring resonators couplings in printed circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 8, 1605-1615, 2014.
doi:10.1109/TMTT.2014.2332302 Google Scholar
26. Facer, G., D. Notterman, and L. Sohn, "Dielectric spectroscopy for bioanalysis: From 40Hz to 26.5GHz in a microfabricated wave guide," Applied Physics Letters, Vol. 78, No. 7, 996-998, 2001.
doi:10.1063/1.1347020 Google Scholar
27. Altunyurt, N., M. Swaminathan, P. M. Raj, and V. Nair, "Antenna miniaturization using magnetodielectric substrates," 59th Electronic Components and Technology Conference, 2009, ECTC 2009, 801-808, 2009.
doi:10.1109/ECTC.2009.5074103 Google Scholar
28. Han, K., M. Swaminathan, P.M. Raj, H. Sharma, K. Murali, R. Tummala, and V. Nair, "Extraction of electrical properties of nanomagnetic materials through meander-shaped inductor and inverted-F antenna structures," 2012 IEEE 62nd Electronic Components and Technology Conference (ECTC), 1808-1813, 2012.
doi:10.1109/ECTC.2012.6249083 Google Scholar
29. Kim, J. W., "Development of interdigitated capacitor sensors for direct and wireless measurements of the dielectric properties of liquids,", https://repositories.lib.utexas.edu/handle/2152/10565, 2008. Google Scholar
30. Hong, J.-S. G. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Vol. 167, John Wiley & Sons, 2004.
31. Jenei, S., B. K. Nauwelaers, and S. Decoutere, "Physics-based closed-form inductance expression for compact modeling of integrated spiral inductors," IEEE Journal of Solid-State Circuits, Vol. 37, No. 1, 77-80, 2002.
doi:10.1109/4.974547 Google Scholar
32. Asgaran, S., "New accurate physics-based closed-form expressions for compact modeling and design of on-chip spiral inductors," The 14th International Conference on IEEE Microelectronics, 2002- ICM, 247-250, 2002. Google Scholar
33. Fooks, E. H. and R. A. Zakarevicius, Microwave Engineering Using Microstrip Circuits, Prentice- Hall, Inc., 1990.
34. Smith, D. and D. Schurig, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Physical Review Letters, Vol. 90, No. 7, 077405, 2003.
doi:10.1103/PhysRevLett.90.077405 Google Scholar
35. Ishimaru, A., Wave Propagation and Scattering in Random Media, Vol. 2, 1978.
36. Garg, R., I. Bahl, and M. Bozzi, Microstrip Lines and Slotlines, Artech House, 2013.
37. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Transactions on Microwave Theory and Techniques, Vol. 38, No. 8, 1096-1103, 1990.
doi:10.1109/22.57336 Google Scholar
38. Cuenca, J. A., K. Bugler, S. Taylor, D. Morgan, P. Williams, J. Bauer, and A. Porch, "Study of the magnetite to maghemite transition using microwave permittivity and permeability measurements," Journal of Physics: Condensed Matter, Vol. 28, No. 10, 106002, 2016.
doi:10.1088/0953-8984/28/10/106002 Google Scholar
39. Tokpanov, Y., V. Lebedev, and W. Pellico, "Measurements of magnetic permeability of soft steel at high frequencies," Proceedings of IPAC-2012, New Orleans, Louisiana, USA, 2012. Google Scholar
40. Van Dam, R. L., J. M. Hendrickx, N. J. Cassidy, R. E. North, M. Dogan, and B. Borchers, "Effects of magnetite on high-frequency ground-penetrating radar," Geophysics, Vol. 78, No. 5, H1-H11, 2013.
doi:10.1190/geo2012-0266.1 Google Scholar
41. Kaye, G. W. C. and T. H. Laby, Tables of Physical and Chemical Constants: And Some Mathematical Functions, Longmans, Green and Company, 1921.
42. Bapna, P. and S. Joshi, "Measurement of dielectric properties of various marble stones of Mewar region of Rajasthan at X-band microwave frequencies," International Journal of Engineering and Innovative Technology (IJEIT), Vol. 2, 180-186, 2013. Google Scholar
43., Dielectric Constant, Strength, & Loss Tangent, 2006.