Vol. 80
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-12-01
Triple Band Notched DG-CEBG Structure Based UWB MIMO/Diversity Antenna
By
Progress In Electromagnetics Research C, Vol. 80, 21-37, 2018
Abstract
A MIMO/Diversity antenna with triple notch characteristics is proposed in this article. The proposed antenna has triple notches in the WiMAX band (3.3-3.6 GHz), WLAN band (5-6 GHz), and X-band satellite communication (7.2-8.4 GHz) band. Defected Ground Compact Electromagnetic Band Gap (DG-CEBG) is a design used to accomplish band notches. Defected ground planes are utilised so as to achieve compactness in conventional EBG structures. The proposed WiMAX band, WLAN band, and X-band satellite communication band DG-CEBG structures show a compactness of around 46%, 50%, and 48%, respectively, over a conventional EBG structure. In these structures, decoupling strips and a slotted ground plane are used to enhance the isolation between two closely spaced UWB monopoles. The individual monopoles are 90° angularly separated with a stepped structure which helps to reduce mutual coupling and also contributes towards impedance matching by increasing the current path length. |S21| or mutual coupling is found to be less than 15 dB over the whole UWB frequency range. The Envelope Correlation Coefficient (≤0.5) is within the acceptable limits over the whole UWB frequency range. Notched frequency depends on the parameters of DG-CEBG structures; when there is a change in these parameters notch frequency is also changed. A low cost FR-4 substrate with thickness (h) = 1.6 mm, permittivity (ɛ) = 4.4 and loss tangent (δ) = 0.02 is used for the proposed antenna, and it has a compact size of 58×45×1.6 mm3.
Citation
Naveen Jaglan, Samir Dev Gupta, Binod Kanaujia, Shweta Srivastava, and Ekta Thakur, "Triple Band Notched DG-CEBG Structure Based UWB MIMO/Diversity Antenna," Progress In Electromagnetics Research C, Vol. 80, 21-37, 2018.
doi:10.2528/PIERC17090702
References

1. Federal Communications Commission "Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems,", Tech. Rep. ET-Docket 98-153, FCC02-48, Federal Communications Commission (FCC), Washington, DC, USA, 2002.
doi:10.1049/el:20045966        Google Scholar

2. Liang, J., C. C. Chiau, X. Chen, and C. G. Parini, "Printed circular disc monopole antenna for ultra-wideband applications," Electron. Lett., Vol. 40, No. 20, 1246-1248, 2004.
doi:10.1109/LAWP.2014.2306812        Google Scholar

3. Sarkar, D., K. Sarkar, and K. Saurav, "A compact microstrip-fed triple band-notched UWB monopole antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 396-399, Feb. 2014.
doi:10.1109/TAP.2013.2260119        Google Scholar

4. Zhu, F., S. Gao, A. T. S. Ho, A. Al Hameed, C. H. See, T. W. C. Brown, J. Li, G. Wei, and J. Xu, "Multiple band-notched UWB antenna with band-rejected elements integrated in the feed line," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 5, 3952-3960, 2013.
doi:10.1109/TAP.2012.2194632        Google Scholar

5. Foudazi, A., H. R. Hassani, and S. M. Ali Nezhad, "Small UWB planar monopole antenna with added GPS/GSM/WLAN bands," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 6, 2987-2992, 2012.        Google Scholar

6. Li, W. T., X. W. Shi, and Y. Q. Hei, "Novel planar UWB monopole antenna with triple bandnotched characteristics," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1094-1098, 2009.
doi:10.1109/LAWP.2012.2192900        Google Scholar

7. Nguyen, D. T., D. H. Lee, and H. C. Park, "Very compact printed triple band-notched UWB antenna with quarter-wavelength slots," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 411-414, 2012.
doi:10.1109/LAWP.2011.2147270        Google Scholar

8. Trang, N. D., D. H. Lee, and H. C. Park, "Design and analysis of compact printed triple bandnotched UWB antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 403-406, 2011.
doi:10.1109/LAWP.2011.2167649        Google Scholar

9. Almalkawi, M. and V. Devabhaktuni, "Ultrawideband antenna with triple band-notched characteristics using closed-loop ring resonators," IEEE Antennas and Wireless Propagation Letters, 959-962, 2011.
doi:10.1109/TAP.2011.2109684        Google Scholar

10. Tang, M. C., S. Xiao, T. Deng, D. Wang, J. Guan, B. Wang, and G. D. Ge, "Compact UWB antenna with multiple band-notches for WiMAX and WLAN," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 4, 1372-1376, 2011.
doi:10.1049/el:20081660        Google Scholar

11. Deng, J. Y., Y. Z. Yin, S. G. Zhou, and Q. Z. Liu, "Compact ultra-wideband antenna with tri-band notched characteristics," Electron. Lett., Vol. 44, No. 21, 1231-123, 2008.
doi:10.1049/iet-map.2009.0367        Google Scholar

12. Mohammadian, N., M. N. Azarmanesh, and S. Soltani, "Compact ultra-wideband slot antenna fed by coplanar waveguide and microstrip line with triple-band-notched frequency function," IET Microw., Antennas Propag., Vol. 4, No. 11, 1811-1817, 2010.
doi:10.1109/LAWP.2017.2652978        Google Scholar

13. Vendik, I. B., A. Rusakov, K. Kanjanasit, J. Hong, and D. Filonov, "Ultrawideband (UWB) planar antenna with single-, Dual-, and triple-band notched characteristic based on ring resonator," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1597-1600, 2017.
doi:10.1049/el.2013.4256        Google Scholar

14. Liu, Y., Z. Chen, and S. Gong, "Triple band-notched aperture UWB antenna using hollow-crossloop resonator," Electron. Lett., Vol. 50, No. 10, 728-730, May 2014.
doi:10.1049/iet-map.2014.0736        Google Scholar

15. Mohammed, H. J., et al. "Design of a uniplanar printed triple band-rejected ultra-wideband antenna using particle swarm optimisation and the fire-fly algorithm," IET Microw., Antennas Propag., Vol. 10, No. 1, 31-37, Jan. 2016.        Google Scholar

16. Cai, Y. Z., H. C. Yang, and L. Y. Cai, "Wideband monopole antenna with three band-notched characteristics," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 607-610, 2014.
doi:10.2528/PIERC17021001        Google Scholar

17. Ali, W. A. E. and R. M. A. Moniem, "Frequency reconfigurable triple band-notched ultra-wideband antenna with compact size," Progress in Electromagnetics Research C, Vol. 73, 37-46, 2017.        Google Scholar

18. Abdelhalim, C. and D. Farid, "A compact planar UWB antenna with triple controllable band notched characteristics," International Journal of Antennas and Propagation, Vol. 2014, 10 pages, Article ID 848062, 2014.        Google Scholar

19. Wang, Q. and Y. Zhang, "Design of a compact UWB antenna with triple bandnotchedcharacteristics," International Journal of Antennas and Propagation, Vol. 2014, 9 pages, Article ID 892765, 2014.
doi:10.1109/LAWP.2011.2116150        Google Scholar

20. Yazdi, M. and N. Komjani, "Design of a band-notched UWB monopole antenna by means of an EBG structure," IEEE Transactions on Antennas and Wireless Propagation, Vol. 10, 170-173, Jan. 2011.
doi:10.1109/TMTT.2011.2114090        Google Scholar

21. Peng, L. and C. Ruan, "UWB band-notched monopole antenna design using electromagneticbandgap structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, 1074-1081, Apr. 2011.
doi:10.1109/TAP.2004.835272        Google Scholar

22. Jensen, M. A. and J. W. Wallace, "A review of antennas and propagation for MIMO wireless communication," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 11, 2810-2824, Nov. 2004.
doi:10.1109/TAP.2012.2201107        Google Scholar

23. Song, Y., T. N. Guo, R. C. Qiu, and M. C. Wicks, "A real time UWB MIMO system with programmable transmit waveforms: Architecture, algorithms and demonstrations," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 8, 3933-3940, Aug. 2012.
doi:10.1109/LAWP.2011.2162717        Google Scholar

24. Song, Y., N. Guo, and R. C. Qiu, "Implementation of UWB MIMO time-reversal radio testbed," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 796-799, 2011.        Google Scholar

25. Ben, I. M., L. Talbi, M. Nedil, and K. Hettak, "MIMO-UWB channel characterization within an underground mine gallery," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 10, 4866-4874, Oct. 2012.        Google Scholar

26. Lu, S., T. Hui, and M. Bialkowski, "Optimizing MIMO channel capacities under the influence of antenna mutual coupling," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 287-290, Jul. 2008.
doi:10.1049/el:20030219        Google Scholar

27. Fletcher, P. N., M. Dean, and A. R. Nix, "Mutual coupling in multi element array antennas and its influence on MIMO channel capacity," Electron. Lett., Vol. 39, No. 4, 342-344, Feb. 2003.
doi:10.1109/LAWP.2005.860210        Google Scholar

28. Chiau, C. C., X. Chen, and C. G. Parini, "A miniature dielectric-loaded folded half-loop antenna and ground plane effects," IEEE Antennas and Wireless Propagation Letters, Vol. 4, No. 1, 459-462, Dec. 2005.
doi:10.1109/TAP.2007.910353        Google Scholar

29. Gao, Y., X. Chen, Z. Ying, and C. Parini, "Design and performance investigation of a dual-element PIFA array at 2.5 GHz for MIMO terminal," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 12, 3433-3441, Dec. 2007.
doi:10.1109/TAP.2007.898618        Google Scholar

30. Chiu, C.-Y., C.-H. Cheng, R. D. Murch, and C. R. Rowell, "Reduction of mutual coupling between closely packed antenna elements," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 6, 1732-1738, Jun. 2007.
doi:10.1049/el:20083032        Google Scholar

31. Kokkinos, T., E. Liakou, and A. P. Feresidis, "Decoupling antenna elements of PIFA arrays on handheld devices," IET Electronic Letters, Vol. 44, No. 25, 1442-1444, 2008.
doi:10.1109/LAWP.2004.825106        Google Scholar

32. Karaboikis, M., C. Soras, G. Tsachtsiris, and V. Makios, "Compact dual-printed inverted-F antenna diversity systems for portable wireless devices," IEEE Antennas and Wireless Propagation Letters, Vol. 3, No. 1, 9-14, Dec. 2004.
doi:10.1109/TAP.2003.817983        Google Scholar

33. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2936-2946, Oct. 2003.
doi:10.1109/TAP.2008.923306        Google Scholar

34. Rajo-Iglesias, E., O. Quevedo-Teruel, and L. Inclan-Sanchez, "Mutual coupling reduction in patch antenna arrays by using a planar EBG structure and a multilayer dielectric substrate," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, 1648-1655, Jun. 2008.
doi:10.1109/TAP.2009.2019908        Google Scholar

35. See, T. S. P. and Z. N. Chen, "An ultra wideband diversity antenna," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 6, 1597-1605, 2009.
doi:10.1109/TAP.2007.905938        Google Scholar

36. Rajagopalan, A., G. Gupta, A. S. Konanur, B. Hughes, and G. Lazzi, "Increasing channel capacity of an ultrawideband MIMO system using vector antennas," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 10, 2880-2887, 2007.
doi:10.1109/TAP.2012.2207049        Google Scholar

37. Zhang, S., B. K. Lau, A. Sunesson, and S. He, "Closely-packed UWB MIMO/diversity antenna with different patterns and polarizations for USB dongle applications," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 9, 4372-4380, 2012.
doi:10.1049/iet-map.2010.0126        Google Scholar

38. Yoon, H. K., Y. J. Yoon, H. Kim, and C. H. Lee, "Flexible ultra-wideband polarization diversity antenna with band-notch function," IET Microw. Antennas Propag., Vol. 5, No. 12, 1463-1470, Sep. 2011.        Google Scholar

39. Lee, J. M., K. B. Kim, H. K. Ryu, and J. M. Woo, "A compact ultrawideband MIMO antenna with WLAN band-rejected operation for mobile devices," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 990-993, Aug. 2012.
doi:10.1109/TAP.2013.2267653        Google Scholar

40. Li, J. F., Q. X. Chu, Z. H. Li, and X. X. Xia, "Compact dual band-notched UWB MIMO antenna with high isolation," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 9, 4759-4766, Sep. 2013.        Google Scholar

41. Gao, P., et al. "Compact printed UWB diversity slot antenna with 5.5-GHz band-notched characteristics," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 376-379, Feb. 2014.
doi:10.1049/iet-map.2012.0732        Google Scholar

42. Chacko, B. P., G. Augustin, and T. A. Denidni, "Uniplanar polarization diversity antenna for wideband systems," IET Microw. Antennas Propag., Vol. 7, No. 10, 851-857, Jul. 2013.        Google Scholar

43. Li, J. F., D. L.Wu, and Y. J.Wu, "Dual band-notched UWB MIMO antenna with uniform rejection performance," Progress In Electromagnetics Research M, Vol. 54, 103-111, 2017.
doi:10.1049/iet-map.2016.0820        Google Scholar

44. Toktas, A., "G-shaped band-notched ultra-wideband MIMO antenna system for mobile terminals," IET Microw., Antennas Propag., Vol. 11, No. 5, 718-725, 2017.
doi:10.1109/TAP.2015.2406892        Google Scholar

45. Liu, L., S. W. Cheung, and T. I. Yuk, "Compact MIMO antenna for portable UWB applications with band-notched characteristic," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 5, 1917-1924, 2015.        Google Scholar

46. Sievenpiper, D., "High-impedance electromagnetic surfaces,", Ph.D. dissereration, Department of Electrical Engineering University of California, Los Angeles, CA, 1999.        Google Scholar

47. Yang, F. and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, 2009.

48. Jaglan, N., S. D. Gupta, B. K. Kanaujia, and S. Srivastava, "Band notched UWB circular monopole antenna with inductance enhanced modified mushroom EBG structure," Wireless Networks, Springer, Aug. 1–11, 2016, DOI: 10.1007/s11276-016-1343-7.        Google Scholar

49. Jaglan, N., B. K. Kanaujia, S. D. Gupta, and S. Srivastava, "Triple band notched UWB antenna design using electromagnetic band gap structures," Progress In Electromagnetics Research C, Vol. 66, 139-147, Jul. 2016.
doi:10.2528/PIER06011701        Google Scholar

50. Sohn, J. R., K. Y. Kim, H.-S. Tae, and H. J. Lee, "Comparative study on various artificial magnetic conductors for low-profile antenna," Progress In Electromagnetics Research, Vol. 61, 27-37, 2006.        Google Scholar

51. Jaglan, N., S. D. Gupta, B. K. Kanaujia, and S. Srivastava, "Design and development of efficient EBG structures based band notched UWB circular monopole antenna," Wireless Personal Communication, 1-27, Springer, May 2017, DOI: 10.1007/s11277-017-4446-2.
doi:10.1109/LAWP.2008.2001026        Google Scholar

52. Ahmed, O. and A. R. Sebak, "A printed monopole antenna with two steps and a circular slot for UWB applications," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 411-413, 2008.
doi:10.1109/TAP.2012.2210178        Google Scholar

53. Assimonis, S. D., T. V. Yioultsis, and C. S. Antonopoulos, "Design and optimization of uniplanar EBG structures for low profile antenna applications and mutual coupling reduction," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 10, 4944-4949, Oct. 2012.        Google Scholar

54. Mu, X., W. Jiang, S.-X. Gong, and F.-W. Wang, "Dual-band low profile directional antenna with high impedance surface reflector," Progress In Electromagnetics Research Letters, Vol. 25, 67-75, 2011.
doi:10.2528/PIERB15090103        Google Scholar

55. Saraswat, R. K. and M. Kumar, "A frequency band reconfigurable UWB antenna for high gain applications," Progress In Electromagnetics Research B, Vol. 64, 29-45, 2015.
doi:10.2528/PIERB15112703        Google Scholar

56. Saraswat, R. K. and M. Kumar, "Miniaturized slotted ground UWB antenna loaded with metamaterial for WLAN and WiMAX applications," Progress In Electromagnetics Research B, Vol. 65, 65-80, 2016.
doi:10.1049/el:20030495        Google Scholar

57. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electron. Lett., Vol. 39, No. 9, 705-707, May 2003.        Google Scholar

58. Srivastava, G. and A. Mohan, "Compact MIMO slot antenna for UWB applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1057-1060, 2015.
doi:10.1109/LAWP.2015.2422571        Google Scholar

59. Kang, L., H. Li, et al. "Compact offset microstrip-fed MIMO antenna for band-notched UWB application," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1754-1757, 2015.
doi:10.1049/el.2015.3889        Google Scholar

60. Chandel, R. and A. K. Gautam, "Compact MIMO/diversity slot antenna for UWB applications with band-notched characteristics," Electron. Lett., Vol. 52, 336-338, 2016.        Google Scholar

61. Zhu, J., S. Li, et al. "Compact dual polarized UWB quasi-self-complementary MIMO/diversity antenna with band rejection capability," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 905-908, 2015.
doi:10.1002/mop.29546        Google Scholar

62. Khan, M. S., A. Iftikhar, S. Asif, A.-D. Capobianco, and B. D. Braaten, "A compact four elements UWB MIMO antenna with on-demand WLAN rejection," Microwave and Optical Technology Letters, Vol. 58, No. 2, 270-276, Feb. 2016.
doi:10.1049/el.2015.1252        Google Scholar

63. Khan, M. S., A. D. Capobianco, S. Asif, A. Iftikhar, B. Ijaz, and B. D. Braaten, "Compact 4×4 UWB-MIMO antenna with WLAN band rejected operation," IET Electronic Letters, Vol. 51, No. 14, 1048-1050, Jul. 2015.
doi:10.1049/el.2015.1056        Google Scholar

64. Khan, M. S., A.-D. Capobianco, A. Naqvi, M. F. Shafique, B. Ijaz, and B. D. Braaten, "Compact planar UWB MIMO antenna with on-demand WLAN rejection," IET Electronic Letters, Vol. 51, No. 13, 963-964, Jun. 2015.
doi:10.2528/PIERC14041105        Google Scholar

65. Kharche, S., G. S. Reddy, R. K. Gupta, and J. Mukherjee, "MIMO antenna for bluetooth, Wi-Fi, Wi-MAX and UWB applications," Progress In Electromagnetics Research PIER C, Vol. 52, 53-62, 2014.        Google Scholar