1. Larbi, M., K. Meguenni, Y. Meddahi, and M. Litim, "Nonlinear observer and backstepping control of quadrotor unmanned aerial vehicle," International Review of Aerospace Engineering (IREASE), Vol. 6, No. 5, 233-242, 2013. Google Scholar
2. Yun, J., S. Cho, H. C. Liu, H.-W. Lee, and J. Lee, "Design of electromagnetic field of permanent magnet generator for VTOL series-hybrid UAV," 2015 18th International Conference on Electrical Machines and Systems, ICEMS, 83-86, 2016. Google Scholar
3. Besnard, J.-P., F. Biais, and M. Martinez, "Electrical rotating machines and power electronics for new aircraft equipment systems," ICAS — Secretariat — 25th Congress of the International Council of the Aeronautical Sciences, 1-9, 2006. Google Scholar
4. Chun, J., H.-C. Song, M.-G. Kang, H. B. Kang, R. Kishore, and S. Priya, "Thermo-magneto-electric generator arrays for active heat recovery system," Sci. Rep., Vol. 7, No. 41383, 1-8, 2017. Google Scholar
5. Secttnde, R. R., R. P. Macosko, and D. S. Repas, "Integrate Engine — Generator concept for aircraft electric secondary power,", National Aeronautics and Space Administration, NASA/TM X 2579, Washington, D.C., June 1972. Google Scholar
6. Nukki, R., A. Kilk, A. Kallaste, T. Vaimann, and K. Sr. Tiimus, "Exterior-rotor permanent magnet synchronous machine with toroidal windings for unmanned aerial vehicles," 9th International: 2014 Electric Power Quality and Supply Reliability Conference, PQ, 215-220, 2014.
doi:10.1109/PQ.2014.6866813 Google Scholar
7. Vavilov, V. E., F. R. Ismagilov, I. K. Khayrullin, and R. D. Karimov, "Multi-disciplinary design of high-RPM electric generator with external rotor for unmanned aerial vehicle," International Review of Aerospace Engineering, Vol. 9, No. 4, 123-130, 2016.
doi:10.15866/irease.v9i4.10340 Google Scholar
8. Upadhayay, P. and V. Patwardhan, "Magnet eddy-current losses in external rotor permanent magnet generator," Proceedings of 2013 International Conference on Renewable Energy Research and Applications, ICRERA, Vol. 6749911, 1068-1071, 2013.
doi:10.1109/ICRERA.2013.6749911 Google Scholar
9. Koo, V. C., Y. K. Chan, and V. Gobi, "A new unmanned aerial vehicle synthetic aperture radar for environmental monitoring," Progress In Electromagnetics Research, Vol. 122, 245-268, 2012.
doi:10.2528/PIER11092604 Google Scholar
10. Uzhegov, N., J. Pyrhonen, and S. Shirinskii, "Loss minimization in high-speed permanent magnet synchronous machines with tooth-coil windings," IECON Proceedings (Industrial Electronics Conference), Vol. 6699601, 2960-2965, 2013. Google Scholar
11. Nagorny, A., N. Dravid, R. Jansen, and B. Kenny, "Design aspects of a high speed permanent magnet synchronous motor/generator for flywheel applications,", NASA/TM-2005-213651, 1–7, 2005. Google Scholar
12. Chin, Y. K., "A permanent magnet synchronous motor for traction application of electric vehicle," IEEE Int. Electric Machines and Drive Conference, Vol. 2, 1035-1041, 2003.
doi:10.1109/IEMDC.2003.1210362 Google Scholar
13. Gieras, J. F., "High speed machines," Advancements in Electric Machines (Power Systems), 81-113, 2008.
doi:10.1007/978-1-4020-9007-3_4 Google Scholar
14. Borisavljevic, A., H. Polinder, and J. Ferreira, "On the speed limits of permanent-magnet machines," IEEE Transactions on Industrial Electronics, Vol. 57, No. 1, 220-227, 2010.
doi:10.1109/TIE.2009.2030762 Google Scholar
15. Vavro, J., M. Kianicova, J. Vavro, Jr., and A. Vavrova, "Modal and frequency analysis for rotor blades of turbo-jet engine TJ 100," University Review, Vol. 7, No. 4, 47-50, 2013. Google Scholar
16. Harris, M. M., A. C. Jones, and E. J. Alexande, "Miniature turbojet development at Hamilton Sundstrand the TJ-50, TJ-120 and TJ -30 turbojets," 2nd AIAA “Unmanned Unlimited” Systems, Technologies, and Operations, Aerospac, San Diego, California, 1–9, 2003. Google Scholar
17. Gruzkov, S. A., et al. "Electrical equipment of aircrafts. Power supply systems for aircraft,", Moscow Power Engineering Institute, Moscow, 2005. Google Scholar
18. Borg Bartolo, J., M. Degano, J. Espina, and C. Gerada, "Design and initial testing of a highspeed 45-kW switched reluctance drive for aerospace application," IEEE Transactions on Industrial Electronics, Vol. 64, No. 2, Vol. 7592921, 988–997, 2016. Google Scholar
19., Electric propulsion components with high power densities for aviation [Online], available: https://nari.arc.nasa.gov/sites/default/files/attachments/Korbinian-TVFW-Aug2015.pdf.
20. Ganev, E., "High-performance electric drives for aerospace more electric architectures," IEEE Power Engineering Society Meeting, 1-8, 2007. Google Scholar
21. Ganev, E., "Selecting the best electric machines for electrical power generation systems," IEEE Electrication Magazine, Vol. 2, No. 4, 13-22, 2014.
doi:10.1109/MELE.2014.2364731 Google Scholar
22. Wang, Z., Y. Enomoto, M. Ito, et al. "Development of a permanent magnet motor utilizing amorphous wound cores," IEEE Trans. Magn., Vol. 46, No. 2, 570-573, 2010.
doi:10.1109/TMAG.2009.2033350 Google Scholar
23. Wang, Z., Y. Enomoto, M. Ito, et al. "Development of an axial gap motor with amorphous metal cores," IEEE Trans. Ind. Appl., Vol. 47, No. 3, 1293-1299, 2011.
doi:10.1109/TIA.2011.2127430 Google Scholar
24. Ruhrig, M., "Stator f¨ureineelektrische Maschine und Verfahrenzum Herstelleneines Stators f¨ureine elektrische Maschine,", Patent DE 102012207508 A1, 07.05.2012. Google Scholar
25. Yakupov, A., F. Ismagilov, I. Khayrullin, and V. Vavilov, "Method of designing high-speed generators for the biogas plant," International Journal of Renewable Energy Research, Vol. 6, No. 2, 447-454, 2016. Google Scholar
26. Uzhegov, N., E. Kurvinen, J. Nerg, J. T. Sopanen, and S. Shirinskii, "Multidisciplinary design process of a 6-slot 2-pole high-speed permanent-magnet synchronous machine," IEEE Transactions on Industrial Electronics, Vol. 63, No. 2, 784-795, 2016.
doi:10.1109/TIE.2015.2477797 Google Scholar
27. Zwyssig, C., J. W. Kolar, and S. D. Round, "Mega-speed drive systems: Pushing beyond 1 million RPM. Mechatronics," IEEE/ASME Transactions, Vol. 14, No. 5, 564-574, 2009.
doi:10.1109/TMECH.2008.2009310 Google Scholar