Vol. 81
Latest Volume
All Volumes
PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-01-29
Compact Dual-Wideband Bandpass Filter Using CSRR Based Extended Right/Left-Handed Transmission Line
By
Progress In Electromagnetics Research C, Vol. 81, 21-30, 2018
Abstract
In this paper a miniaturized dual wideband bandpass filter is designed by the modified extended composite right/left-handed transmission line (ECRLH-TL) under balanced conditions in each right/left-hand passbands. A novel equivalent circuit is proposed to provide the design and an implementation of ECRLH unit-cell by means of the complementary, split ring resonator (CSRR) on the ground plane. Since CSRR is utilized as an alternative to implementing one of the resonators of ECRLH unit-cell, the size and complexity of the structure can be consequently reduced. An example of a dual band pass filter with 3 dB frequency bands from 3.2 to 4.8 GHz and from 6 to 7 GHz is investigated. There is a good agreement among circuit, electromagnetic simulations and measured results in both passbands. The measured insertion loss is better than 0.5 and 1 dB in first and second bands central frequency, respectively. The group delay which is an important factor in wideband communications is about 0.62 ns and 0.71 ns, respectively, in the first and second band central frequencies. The final dimensions of the miniaturized filter are reduced to 8.88 mm X 8.18 mm.
Citation
Parya Fathi, Zahra Atlasbaf, and Keyvan Forooraghi, "Compact Dual-Wideband Bandpass Filter Using CSRR Based Extended Right/Left-Handed Transmission Line," Progress In Electromagnetics Research C, Vol. 81, 21-30, 2018.
doi:10.2528/PIERC17100206
References

1. Liu, Y. and W. Dou, "A dual-band filter realized by alternately connecting the main transmission-line with shunt stubs and shunt serial resonators," IEEE Microw. Wirel. Components Lett., Vol. 19, No. 5, 296-298, 2009.
doi:10.1109/LMWC.2009.2017594

2. Li, X., Y. Zhang, J. Xie, X. Zhang, Y. Tian, and Y. Fan, "Dual band bandpass filter using meander split loop resonator," Microw. Opt. Technol. Lett., Vol. 59, No. 10, 2490-2493, 2017.
doi:10.1002/mop.30762

3. Kim, C., T. Hyeon Lee, B. Shrestha, and K. Chul Son, "Miniaturized dual-band bandpass filter based on stepped impedance resonators," Microw. Opt. Technol. Lett., Vol. 59, No. 5, 1116-1119, 2017.
doi:10.1002/mop.30481

4. Firmansyah, T., S. Praptodinoyo, R. Wiryadinata, S. Suhendar, S. Wardoyo, A. Alimuddin, C. Chairunissa, M. Alaydrus, and G. Wibisono, "Dual-wideband band pass filter using folded cross-stub stepped impedance resonator," Microw. Opt. Technol. Lett., Vol. 59, No. 11, 2929-2934, 2017.
doi:10.1002/mop.30848

5. Feng, W., Y. Zhang, and W. Che, "Tunable dual-band filter and diplexer based on folded open loop ring resonators," IEEE Trans. Circuits Syst. II Express Briefs, Vol. 64, No. 9, 1047-1051, 2017.
doi:10.1109/TCSII.2016.2634555

6. An, B., G. Chaudhary, and Y. Jeong, "Size reduction of composite right/left handed transmission line and its application to the design of dual-band bandpass filter," Microw. Opt. Technol. Lett., Vol. 59, No. 9, 2272-2276, 2017.
doi:10.1002/mop.30724

7. Eleftheriades, G. V., A. K. Iyer, and P. C. Kremer, "Planar negative refractive index media using periodically LC loaded transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 12, 2702-2712, 2002.
doi:10.1109/TMTT.2002.805197

8. Caloz, C., A. Sanada, and T. Itoh, "Microwave circuits based on negative refractive index material structures," 33rd Eur. Microw. Conf. 2003, No. c, 2003.

9. Norooziarab, M., Z. Atlasbaf, and F. Farzami, "Substrate integrated waveguide loaded by 3-dimensional embedded split ring resonators," AEU-International J. Electron. Commun., Vol. 68, No. 7, 658-660, 2014.
doi:10.1016/j.aeue.2014.02.008

10. Keshavarzi, S. and Z. Atlasbaf, "Switchable bandpass filter using CRLH cells based on a new kind of admittance inverter," Int. J. Microw. Wirel. Technol., Vol. 9, No. 1, 61-69, 2017.
doi:10.1017/S1759078715001488

11. Kahng, S. and J. Ju, "Design of the UWB bandpass filter based on the 1 cell of microstrip CRLHTL," 2008 Int. Conf. Microw. Millim. Wave Technol. Proceedings, ICMMT, Vol. 1, 69-72, 2008.
doi:10.1109/ICMMT.2008.4540303

12. Huang, J.-Q. and Q.-X. Chu, "Compact UWB band-pass filter utilizing modified composite right/left-handed structure with cross coupling," Progress In Electromagnetics Research, Vol. 107, 179-186, 2010.
doi:10.2528/PIER10070403

13. Rennings, A., S. Otto, J. Mosig, C. Caloz, and I. Wolff, "Extended composite right/left-handed (E-CRLH) metamaterial and its application as quadband quarter-wavelength transmission line," Microwave Conference, 2006. APMC 2006. Asia-Pacific, 1405-1408, 2006.
doi:10.1109/APMC.2006.4429669

14. Eleftheriades, G. V. and A. Abstract, "A generalized negative-refractive-index transmission-line (NRI-TL) metamaterial for dual-band and quad-band applications," Microw. Wirel. Components Lett. IEEE, Vol. 17, No. 6, 415-417, 2007.
doi:10.1109/LMWC.2007.897786

15. Caloz, C., "Dual composite right/left-handed (D-CRLH) transmission line metamaterial," IEEE Microw. Wirel. Components Lett., Vol. 16, No. 11, 585-587, 2006.
doi:10.1109/LMWC.2006.884773

16. Studniberg, M. and G. V. Eleftheriades, "A dual-band bandpass filter based on generalized negative-refractive-index transmission-lines," IEEE Microw. Wirel. Components Lett., Vol. 19, No. 1, 2009-2011, 2009.

17. Duran-Sindreu, M., J. Bonache, and F. Martin, "Compact CPW dual-band bandpass filters based on semi-lumped elements and metamaterial concepts," 2010 Asia-Pacific Microw. Conf., Vol. 1, No. c, 670-673, 2010.

18. Duran-Sindreu, M., G. Siso, J. Bonache, and F. Martin, "Planar multi-band microwave components based on the generalized composite right/left handed transmission line concept," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 12, Part 2, 3882-3891, 2010.

19. Duran-Sindreu, M., J. Bonache, F. Martin, T. Itoh, P. B. Structures, and P. Components, "Single-layer fully-planar extended-composite right-/left-handed transmission lines based on substrate integrated waveguides for dual-band and quad-band applications," Int. J. Microw. Wirel. Technol., Vol. 5, No. 03, 213-220, 2013.
doi:10.1017/S1759078713000433

20. Boutejdar, A., M. Challal, A. Omar, E. Burte, R. Mikuta, and A. Azrar, "A novel band-stop filter using octagonal-shaped patterned ground structures along with interdigital and compensated capacitors," ACES Journal --- The Appl. Comput. Electromagn. Issue, Vol. 26, No. 10, 2011.

21. Boutejdar, A., A. Omar, and E. Burte, "High-performance wide stop band low-pass filter using a vertically coupled DGS-DMS-resonators and interdigital capacitor," Microw. Opt. Technol. Lett., Vol. 56, No. 1, 87-91, 2014.
doi:10.1002/mop.28031

22. Ryan, C. G. M. and G. V. Eleftheriades, "Design of a printed dual-band coupled-line coupler with generalised negative-refractive index transmission lines," IET Microwaves, Antennas Propag., Vol. 6, No. 6, 705, 2012.
doi:10.1049/iet-map.2011.0508

23. Marques, R., F. Martın, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications, Vol. 183, John Wiley & Sons, 2011.

24. Fathi, P., Z. Atlasbaf, and K. Forooraghi, "Modified extended composite right/left-handed layout loaded with CSRR for quad band applications," Progress In Electromagnetics Research Letters, Vol. 61, 7-12, 2016.
doi:10.2528/PIERL16030404

25. Bonache, J., M. Gil, I. Gil, J. Garcia-Garcia, and F. Martin, "On the electrical characteristics of complementary metamaterial resonators," IEEE Microw. Wirel. Components Lett., Vol. 16, No. 10, 543-545, 2006.
doi:10.1109/LMWC.2006.882400

26. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, 2005.
doi:10.1002/0471754323