1. Bicer, M. B., A. Akdagli, and C. Ozdemir, "Breast cancer detection using inverse radon transform with microwave image technique," 2015 23th Signal Processing and Communications Applications Conference (SIU), 2182-2185, 2015.
doi:10.1109/SIU.2015.7130306 Google Scholar
2. Nass, S. J., I. C. Henderson, and J. C. Lashof, Mammography and Beyond: Developing Technologies for the Early Detection of Breast Cancer, Vol. 4, No. 3, National Academy Press, 2002.
3. Kuhl, C. K., et al. "Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer," J. Clin. Oncol., Vol. 23, No. 33, 8469-8476, Nov. 2005.
doi:10.1200/JCO.2004.00.4960 Google Scholar
4. Heywang-Köbrunner, S. H., A. Hacker, and S. Sedlacek, "Advantages and disadvantages of mammography screening," Breast Care, Vol. 6, No. 3, 199-207, Jun. 2011.
doi:10.1159/000329005 Google Scholar
5. Orel, S. G. and M. D. Schnall, "MR imaging of the breast for the detection, diagnosis, and staging of breast cancer," Radiology, Vol. 220, No. 1, 13-30, Jul. 2001.
doi:10.1148/radiology.220.1.r01jl3113 Google Scholar
6. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. M. Breslin, W. Temple, D. Mew, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, No. 20, 6093, 2007.
doi:10.1088/0031-9155/52/20/002 Google Scholar
7. Surowiec, A. J., S. S. Stuchly, J. R. Barr, and A. Swarup, "Dielectric properties of breast carcinoma and the surrounding tissues," IEEE Transactions on Biomedical Engineering, Vol. 35, No. 4, 257-263, 1988.
doi:10.1109/10.1374 Google Scholar
8. Lim, H. B., N. T. T. Nhung, E.-P. Li, and N. D. Thang, "Confocal microwave imaging for breast cancer detection: Delay-Multiply-and-Sum image reconstruction algorithm," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 6, 1697-1704, 2008.
doi:10.1109/TBME.2008.919716 Google Scholar
9. Ortega-Palacios, R., L. Leija, A. Vera, and M. F. J. Cepeda, "Measurement of breast-tumor phantom dielectric properties for microwave breast cancer treatment evaluation," Program and Abstract Book - 2010 7th International Conference on Electrical Engineering, Computing Science and Automatic Control, 216-219, 2010. Google Scholar
10. Li, X., E. J. Bond, B. D. Van Veen, and S. C. Hagness, "An overview of ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection," IEEE Antennas Propag. Mag., Vol. 47, No. 1, 19-34, 2005.
doi:10.1109/MAP.2005.1436217 Google Scholar
11. Xie, Y., B. Guo, L. Xu, J. Li, and P. Stoica, "Multistatic adaptive microwave imaging for early breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 53, No. 8, 1647-1657, 2006.
doi:10.1109/TBME.2006.878058 Google Scholar
12. Fear, E. C., P. M. Meaney, and M. Stuchly, "Microwaves for breast cancer detection," IEEE Potentials, Vol. 22, No. 1, 12, 2003.
doi:10.1109/MP.2003.1180933 Google Scholar
13. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Trans. Biomed. Eng., Vol. 49, No. 8, 812-822, 2002.
doi:10.1109/TBME.2002.800759 Google Scholar
14. Winters, D. W., J. D. Shea, P. Kosmas, B. D. Van Veen, and S. C. Hagness, "Three-dimensional microwave breast imaging: Dispersive dielectric properties estimation using patient-specific basis functions," IEEE Transactions on Medical Imaging, Vol. 28, No. 7, 969-981, 2009.
doi:10.1109/TMI.2008.2008959 Google Scholar
15. Irishina, N., M. Moscoso, and O. Dorn, "Microwave imaging for early breast cancer detection using a shape-based strategy," IEEE Trans. Biomed. Eng., Vol. 56, No. 4, 1143-1153, 2009.
doi:10.1109/TBME.2009.2012398 Google Scholar
16. Meaney, P. M., M. W. Fanning, T. Zhou, A. Golnabi, S. D. Geimer, and K. D. Paulsen, "Clinical microwave breast imaging - 2D results and the evolution to 3D," Proceedings of the 2009 International Conference on Electromagnetics in Advanced Applications, ICEAA'09, 881-884, 2009.
doi:10.1109/ICEAA.2009.5297356 Google Scholar
17. Kurrant, D. J., E. C. Fear, and D. T. Westwick, "Tumor response estimation in radar-based microwave breast cancer detection," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 12, 2801-2811, 2008.
doi:10.1109/TBME.2008.921164 Google Scholar
18. Davis, S. K., B. D. Van Veen, S. C. Hagness, and F. Kelcz, "Breast tumor characterization based on ultrawideband microwave backscatter," IEEE Trans. Biomed. Eng., Vol. 55, No. 1, 237-246, 2008.
doi:10.1109/TBME.2007.900564 Google Scholar
19. Yun, X., E. C. Fear, and R. H. Johnston, "Compact antenna for radar-based breast cancer detection," IEEE Trans. Antennas Propag., Vol. 53, No. 8, 2374-2380, 2005.
doi:10.1109/TAP.2005.852308 Google Scholar
20. Klemm, M., I. Craddock, J. Leendertz, A. Preece, and R. Benjamin, "Experimental and clinical results of breast cancer detection using UWB microwave radar," 2008 IEEE Antennas and Propagation Society International Symposium, No. 1, 1-4, 2008. Google Scholar
21. Flores-Tapia, D., O. Maizlish, C. Alabaster, and S. Pistorius, "Microwave radar imaging of inhomogeneous breast phantoms using circular holography," 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), 86-89, 2012.
doi:10.1109/ISBI.2012.6235490 Google Scholar
22. Smith, D., B. Livingstone, M. Elsdon, H. Zheng, V. Schejbal, and O. Yurduseven, "The development of indirect microwave holography for measurement and imaging applications," 2015 IEEE 15th Mediterranean Microwave Symposium (MMS), 1-4, 2015. Google Scholar
23. Cheng, G., Y. Zhu, and J. Grzesik, "3-D microwave imaging for breast cancer," 2012 6th European Conference on Antennas and Propagation (EUCAP), 3672-3676, 2011. Google Scholar
24. Pastorino, M., "Hybrid reconstruction techniques for microwave imaging systems," 2010 IEEE International Conference on Imaging Systems and Techniques, 198-203, 2010.
doi:10.1109/IST.2010.5548474 Google Scholar
25. Ünal, I., B. Türetken, and Y. Çotur, "Microwave imaging of breast cancer tumor inside voxel-based breast phantom using conformal antennas," 2014 31th URSI General Assembly and Scientific Symposium, URSI GASS 2014, 1-4, 2014. Google Scholar
26. Mallat, S. G. and Z. Zhang, "Matching pursuits with time-frequency dictionaries," IEEE Transactions on Signal Processing, Vol. 41, No. 12, 3397-3415, 1993.
doi:10.1109/78.258082 Google Scholar
27. Franaszczuk, P. J., G. K. Bergey, P. J. Durka, and H. M. Eisenberg, "Time-frequency analysis using the matching pursuit algorithm applied to seizures originating from the mesial temporal lobe," Electroencephalogr. Clin. Neurophysiol., Vol. 106, No. 6, 513-521, Jun. 1998.
doi:10.1016/S0013-4694(98)00024-8 Google Scholar
28. Tropp, J. A. and A. C. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Transactions on Information Theory, Vol. 53, No. 12, 4655-4666, 2007.
doi:10.1109/TIT.2007.909108 Google Scholar
29. La, C. and M. N. Do, "Tree-based orthogonal matching pursuit algorithm for signal reconstruction," 2006 International Conference on Image Processing, 1277-1280, 2006.
doi:10.1109/ICIP.2006.312578 Google Scholar
30. Do, T. T., L. Gan, N. Nguyen, and T. D. Tran, "Sparsity adaptive matching pursuit algorithm for practical compressed sensing," 2008 42nd Asilomar Conference on Signals, Systems and Computers, 581-587, 2008.
doi:10.1109/ACSSC.2008.5074472 Google Scholar
31. Pati, Y. C., R. Rezaiifar, and P. S. Krishnaprasad, "Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition," Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, Vol. 1, 40-44, 1993.
doi:10.1109/ACSSC.1993.342465 Google Scholar
32. Buhlmann, P., "Boosting for high-dimensional linear models," Ann. Stat., Vol. 34, No. 2, 559-583, 2006.
doi:10.1214/009053606000000092 Google Scholar
33. Yoshida, H., R. M. Nishikawa, M. L. Giger, and K. Doi, "Signal/background separation by wavelet packets for detection of microcalcifications in mammograms," Proc SPIE, Vol. 2825, 2825-2827, 1996. Google Scholar
34. Moll, J., J. B. Harley, and V. Krozer, "Data-driven matched field processing for radar-based microwave breast cancer detection," 2015 9th European Conference on Antennas and Propagation (EuCAP), 1-4, 2015. Google Scholar
35. Ozdemir, C., Inverse Synthetic Aperture Radar Imaging, Wiley & Sons, Inc., 2012.
doi:10.1002/9781118178072
36. Su, T., C. Ozdemir, and H. Ling, "On extracting the radiation center representation of antenna radiation patterns on a complex platform," Microw. Opt. Technol. Lett., Vol. 26, No. 1, 4-7, 2000.
doi:10.1002/(SICI)1098-2760(20000705)26:1<4::AID-MOP2>3.0.CO;2-2 Google Scholar
37. CST Microwave Studio, Computer Simulation Technology GmbH.
doi:10.1002/(SICI)1098-2760(20000705)26:1<4::AID-MOP2>3.0.CO;2-2 Google Scholar