Vol. 63
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-01-14
Frequency Diverse Array Using Butler Matrix for Secure Wireless Communications.
By
Progress In Electromagnetics Research M, Vol. 63, 207-215, 2018
Abstract
An antenna array system configured to offer directional dependent modulation has the capability to prevent eavesdroppers' attacks, thereby enhancing the security level of data transmission. In this paper, we propose artificial-noise-aided directional modulation transmitter utilizing a 4×4 Butler matrix with a four-element 2-D (i.e., range and angle) frequency diverse array (FDA) antenna to achieve secure transmissions, which outperforms the 1-D (i.e, angle) phased array scheme. The proposed scheme utilizes FDA Butler matrix excited by information data and injected artificial noise interference which radiates along all directions except the main information data direction. Thus, the radiation pattern during a particular transmission period will be range-angle dependent. The proposed scheme is evaluated by using constellation points in IQ space, bit error probability (BER), and secrecy capacity. Simulation results demonstrate that: 1) our scheme scrambles the constellation points along undesired direction(s) in both amplitude and phase, while preserving a clear constellation points along the pre-specified direction(s); 2) the scheme achieves better BER and secrecy capacity than that of the phased array based directional modulation scheme and other existing scheme; 3) the scheme significantly improve security performance especially in the range dimension.
Citation
Shaddrack Yaw Nusenu, Hui Chen, Wen-Qin Wang, Shilong Ji, and Obour A. K. Opuni-Boachie, "Frequency Diverse Array Using Butler Matrix for Secure Wireless Communications.," Progress In Electromagnetics Research M, Vol. 63, 207-215, 2018.
doi:10.2528/PIERM17101305
References

1. Babakhani, A., D. B. Rutledge, and A. Hajimiri, "Transmitter architectures based on near-field direct antenna modulation," IEEE Journal of Solid-state Circuits, Vol. 43, No. 12, 2674-2692, Dec. 2008.
doi:10.1109/JSSC.2008.2004864

2. Daly, M. P. and J. T. Bernhard, "Directional modulation technique for phased arrays," IEEE Trans. on Antennas and Propagation, Vol. 57, No. 9, 2633-2640, Sep. 2009.
doi:10.1109/TAP.2009.2027047

3. Alotaibi, N. and K. A. Hamdi, "Switched phased-array transmission architecture for secure millimeter-wave wireless communication," IEEE Trans. on Commu., Vol. 64, No. 3, 1303-1312, Mar. 2016.
doi:10.1109/TCOMM.2016.2519403

4. Ding, Y. and V. Fusco, "Sidelobe manipulation using Butler matrix for 60 GHz physical layer secure wireless communication," 2013 Loughborough Antennas and Propagation Conference, 61-65, Loughborough, UK, Nov. 2013.

5. Campo, M., W. Simon, and R. Baggen, "Steerable antenna array at 24 GHz using Butler matrices and MEMS-switches," Proc. of IEEE International Symposium on Antennas and Propagation, 1-2, Kamp-Lintfort, Germany, Jul. 2012.

6. Bhowmik, W. and S. Srivastava, "Optimum design of a 4×4 planar Butler matrix array for WLAN application," Journal of Telecommunications, Vol. 2, No. 1, 68-74, Apr. 2010.

7. Ueno, M., "A systematic design formulation for Butler matrix applied FFT algorithm," IEEE Trans. on Antennas and Propagation, Vol. 29, No. 3, 496-501, 1981.
doi:10.1109/TAP.1981.1142601

8. Ibrahim, S. Z. and M. K. A. Rahim, "Switched beam antenna using omnidirectional antenna array," 2007 Asia-Pacific Conference on Applied Electromagnetics Proceedings, 1-4, Melaka, Malaysia, Dec. 4-6, 2007.

9. Tian, G., J. P. Yang, W, and Wu, "A novel compact Butler matrix without phase shifter," IEEE Microwave and Wireless Components Lett., Vol. 24, No. 5, 306-308, May 2014.
doi:10.1109/LMWC.2014.2306898

10. Antonik, P., M. C. Wicks, H. D. Griffiths, et al. "Frequency diverse array radars," Proc. of the IEEE Radar Conference, 215-217, Verona, NY, Apr. 2006.

11. Hu, J., S. Yan, F, Shu, et al. "Artificial-noise-aided secure transmission with directional modulation based on random frequency diverse arrays," IEEE Acess, Vol. 5, 1658-1667, Jan. 2017.
doi:10.1109/ACCESS.2017.2653182

12. Wang, W. Q., "DM using frequency diverse array antenna for secure transmission," IET Microwaves, Antennas and Propagation, Vol. 11, No. 3, 336-345, Apr. 2017.
doi:10.1049/iet-map.2016.0303

13. Ding, Y., J. Zhang, and V. Fusco, "Frequency diverse array OFDM transmitter for secure wireless communication," Electronics Lett., Vol. 51, No. 17, 1374-1376, Aug. 20, 2015.
doi:10.1049/el.2015.1491

14. Nusenu, S. Y., W. Q. Wang, and J. Xiong, "Time-modulated frequency diverse array for physical-layer security," IET Microwaves, Antennas and Propagation, Vol. 15, No. 3, 336-345, Apr. 2017.

15. Nusenu, S. Y., W. Q. Wang, and S. Ji, "Secure directional modulation using frequency diverse array antenna," IEEE Radar Conference, 0378-0382, May 2017.

16. Wang, W. Q., "Frequency diverse array antenna: New opportunities," IEEE Antennas and Propagation Magazine, Vol. 57, No. 2, 145-152, Apr. 2015.
doi:10.1109/MAP.2015.2414692

17. Mailloux, R. J., Phased Array Antenna Handbook, Artech House, Inc., Boston, 2005.

18. Goel, S. and R. Negi, "Guaranteeing secrecy using artificial noise," IEEE Trans. Wireless Commun., Vol. 7, No. 6, 2180-2189, Jun. 2008.
doi:10.1109/TWC.2008.060848

19. Yang, N., S. Yan, J. Yuan, R. Malaney, R. Subramanian, and I. Land, "Artificial noise: Transmission optimization in multi-input single-output wiretap channels," IEEE Trans. Commun., Vol. 63, No. 5, 1771-1783, May 2015.
doi:10.1109/TCOMM.2015.2419634

20. Hu, J., F. Shu, and J. Li, "Robust synthesis method for secure directional modulation with imperfect direction angle," IEEE Commun. Lett., Vol. 20, No. 6, 1084-1087, Jun. 2016.
doi:10.1109/LCOMM.2016.2550022

21. Barry, J. R., E. A. Lee, and D. G. Messerschmitt, Digital Communication, 3rd Ed., Springer, 2004.
doi:10.1007/978-1-4615-0227-2

22. Cheong, S. L. Y. and M. E. Hellman, "The gaussian wire-tap channel," IEEE Trans. Information Theory, Vol. 24, No. 4, 451-456, Jul. 1978.
doi:10.1109/TIT.1978.1055917