1. Nisenoff, M., "Microwave superconductivity Part 1: History, properties and early applications," 2011 IEEE MTT-S International Conference Microwave Symposium Digest (MTT), 1-4, 2011. Google Scholar
2. Mansour, R. R., "Microwave superconductivity," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, 750-759, 2002.
doi:10.1109/22.989959 Google Scholar
3. Ribadeneira-Ramirez, J., G. Martinez, D. Gomez-Barquero, and N. Cardona, "Interference analysis between digital terrestrial television (DTT) and 4G LTE mobile networks in the digital dividend bands," IEEE Transactions on Broadcasting, Vol. 62, 24-34, 2016.
doi:10.1109/TBC.2015.2492465 Google Scholar
4. Davidson, D. B., Computational Electromagnetics for RF and Microwave Engineering, 23-30, Cambridge University Press, 2010.
doi:10.1017/CBO9780511778117
5. Newman, N. and W. G. Lyons, "High-temperature superconducting microwave devices: Fundamental issues in materials, physics, and engineering," Journal of Superconductivity, Vol. 6, 119-160, 1993.
doi:10.1007/BF00625741 Google Scholar
6. Weigel, R., A. Valenzuela, and P. Russer, "YBCO superconducting microwave components," Applied Superconductivity, Vol. 1, 1595-1604, 1993.
doi:10.1016/0964-1807(93)90307-N Google Scholar
7. Van Delft, D., "History and significance of the discovery of superconductivity by Kamerlingh Onnes in 1911," Physica C: Superconductivity, Vol. 479, 30-35, 2012.
doi:10.1016/j.physc.2012.02.046 Google Scholar
8. Wang, L., C.-H. Hsieh, and C.-C. Chang, "Cross-coupled narrow-band filter for the frequency range of 2.1GHz using YBCO resonators with artificial magnetic pinning lattices," IEEE Transactions on Applied Superconductivity, Vol. 15, 1040-1043, 2005.
doi:10.1109/TASC.2005.850192 Google Scholar
9. Bai, D., J. Du, T. Zhang, and Y. He, "A compact high temperature superconducting bandpass filter for integration with a Josephson mixer," Journal of Applied Physics, Vol. 114, 133906, 2013.
doi:10.1063/1.4824489 Google Scholar
10. Zhang, T., K. Yang, H. Zhu, L. Zhou, M. Jiang, and W. Dang, "Miniaturized HTS linear phase filter based on neighboring CQ units sharing resonators," Superconductor Science and Technology, Vol. 28, 105012, 2015.
doi:10.1088/0953-2048/28/10/105012 Google Scholar
11. Greenberg, Y., Y. Lumelsky, M. Silverstein, and E. Zussman, "YBCO nanofibers synthesized by electrospinning a solution of poly (acrylic acid) and metal nitrates," Journal of Materials Science, Vol. 43, 1664-1668, 2008.
doi:10.1007/s10853-007-2389-9 Google Scholar
12. Shen, Z., Y. Wang, W. Chen, L. Fei, K. Li, and H. L. W. Chan, "Electrospinning preparation and high-temperature superconductivity of YBa2Cu3O7−x nanotubes," Journal of Materials Science, Vol. 48, 3985-3990, 2013.
doi:10.1007/s10853-013-7207-y Google Scholar
13. Duarte, E. A., N. G. Rudawski, P. A. Quintero, M. W. Meisel, and J. C. Nino, "Electrospinning of superconducting YBCO nanowires," Superconductor Science and Technology, Vol. 28, 015006, 2014.
doi:10.1088/0953-2048/28/1/015006 Google Scholar
14. Cui, X. M., W. S. Lyoo, W. K. Son, D. H. Park, J. H. Choy, and T. S. Lee, "Fabrication of YBa2Cu3O7−δ superconducting nanofibres by electrospinning," Superconductor Science and Technology, Vol. 19, 1264, 2006.
doi:10.1088/0953-2048/19/12/007 Google Scholar
15. Uslu, I., M. Kemal Ozturk, M. Levent Aksu, and F. Gokmese, "Fabrication and characterization of boron supported YBCO superconductive nanofibers by electrospinning," Current Nanoscience, Vol. 6, 408-412, 2010.
doi:10.2174/157341310791658946 Google Scholar
16. Jasim, S. E. and M. A. Jusoh, "Design broad bandwidth microwave bandpass filter of 10 GHz operating frequency using HFSS," Proceedings of the 119th IIER International Conference, 31-34, Putrajaya, Malaysia, September 4-5, 2017. Google Scholar
17. Jasim, S. E., M. A. Jusoh, M. Hafiz, and R. Jose, "Fabrication of superconducting YBCO nanoparticles by electrospinning," Procedia Engineering, Vol. 148, 243-248, 2016.
doi:10.1016/j.proeng.2016.06.595 Google Scholar
18. Chen, J.-X., T. Y. Yum, J.-L. Li, and Q. Xue, "Dual-mode dual-band bandpass filter using stacked-loop structure," IEEE Microwave and Wireless Components Letters, Vol. 16, 502-504, 2006.
doi:10.1109/LMWC.2006.880705 Google Scholar
19. Sun, S. and L. Zhu, "Compact dual-band microstrip bandpass filter without external feeds," IEEE Microwave and Wireless Components Letters, Vol. 15, 644-646, 2005.
doi:10.1109/LMWC.2005.856687 Google Scholar
20. Kumar, M. and S. Kumar, "Designing of half wavelength parallel-edge coupled line bandpass filter using HFSS," International Journal of Advanced Research in Computer Science and Software Engineering, Vol. 4, 876-882, 2014. Google Scholar
21. Mohajeri, R., Y. A. Opata, A. C. Wulff, J.-C. Grivel, and M. Fardmanesh, "All metal organic deposited high-Tc superconducting transition edge bolometer on yttria-stabilized zirconia substrate," Journal of Superconductivity and Novel Magnetism, Vol. 1, 1-6, 2016. Google Scholar
22. Nur-Akasyah, J., N. Nur-Shamimie, and R. Abd-Shukor, "Effect of CdTe addition on the electrical properties and AC susceptibility of YBa2Cu3O7−δ superconductor," Journal of Superconductivity and Novel Magnetism, 1-5, 2017. Google Scholar
23. Zhang, T., J. Du, Y. J. Guo, and X.-W. Sun, "On-chip integration of HTS bandpass and lowpass filters with Josephson mixer," Electronics Letters, Vol. 48, 729-731, 2012.
doi:10.1049/el.2012.1411 Google Scholar
24. Dadras, S. and M. Ghavamipour, "Investigation of the properties of carbon-base nanostructures doped YBa2Cu3O7−δ high temperature superconductor," Physica B: Condensed Matter, Vol. 1, 13-17, 2016.
doi:10.1016/j.physb.2015.12.025 Google Scholar
25. Croitoru, M. D., A. A. Shanenko, and F. M. Peeters, "Dependence of superconducting properties on the size and shape of a nanoscale superconductor: From nanowire to film," Physical Review B, Vol. 1, 024511, 2007.
doi:10.1103/PhysRevB.76.024511 Google Scholar
26. Lu, X., B. Wei, Z. Xu, B. Cao, X. Guo, and X. Zhang, "Superconducting Ultra-Wideband (UWB) bandpass filter design based on quintuple/quadruple/triple-mode resonator," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, 1281-1293, 2015.
doi:10.1109/TMTT.2015.2402152 Google Scholar
27. Jing, D., K. Shao, C. Cao, L. Zhang, G. Jiao, and Z. Zhang, "10 GHz bandpass YBCO superconducting microstrip filter," Superconductor Science and Technology, Vol. 7, 792, 1994.
doi:10.1088/0953-2048/7/11/002 Google Scholar
28. Zhang, T., L. Zhou, K. Yang, C. Luo, M. Jiang, and W. Dang, "The research of parallel-coupled linear-phase superconducting filter," Physica C: Superconductivity and Its Applications, Vol. 519, 153-158, 2015.
doi:10.1016/j.physc.2015.10.006 Google Scholar
29. Bhattacharjee, S., D. Poddar, S. Mukherjee, S. Saurabh, and S. Das, "Design of microstrip parallel coupled band pass filter for global positioning system," Journal of Engineering, Computers & Applied Sciences (JEC&AS), Vol. 2, 122-159, 2013. Google Scholar
30. Chung, D.-C., "HTS bandpass filters using parallel coupled microstrip-stepped impedance resonator," Physica C: Superconductivity, Vol. 341, 2659-2660, 2000.
doi:10.1016/S0921-4534(00)01445-3 Google Scholar
31. Shivhare, J., "Design and development of low loss microstrip band pass filters by using YBCO-high temperature superconducting thin film," Recent Advances in Microwave Theory and Applications, 2008, International Conference MICROWAVE 2008, 382-383, 2008.
doi:10.1109/AMTA.2008.4762964 Google Scholar
32. Shang, Z., X. Guo, B. Cao, X. Zhang, B. Wei, and Y. Heng, "Design and performance of an HTS wideband microstrip bandpass filter at X-band," Microwave and Optical Technology Letters, Vol. 55, 1027-1029, 2013.
doi:10.1002/mop.27485 Google Scholar
33. Bai, D., X. He, X. Zhang, H. Li, Q. Zhang, and C. Li, "Design of an s-band HTS filter with high power capability," IEEE Transactions on Applied Superconductivity, Vol. 23, 14-18, 2013.
doi:10.1109/TASC.2013.2277776 Google Scholar
34. Liu, H., L. Rao, Y. Xu, P.Wen, B. Ren, and X. Guan, "Design of high-temperature superconducting wideband bandpass filter with narrow-band notch resonators for radio telescope application," IEEE Transactions on Applied Superconductivity, Vol. 27, 1-4, 2017. Google Scholar