Vol. 81
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-02-04
A High Return Loss of Microwave Bandpass Filter Using Superconducting Electrospun YBCO Nanostructures
By
Progress In Electromagnetics Research C, Vol. 81, 63-75, 2018
Abstract
A high return loss (-30 dB), small size (100 mm2) and broad bandwidth (1.5 GHz) microwave bandpass filter has been designed using finite element modelling and developed using the superconducting YBa2Cu3O7-δ (YBCO) thin films deposited on a (10 × 10 mm2) LaAlO3 substrate by spin coating. The thin films have been prepared by electrospinning and solid-state techniques. The microwave properties of filter circuits were experimentally determined using the vector network analyser (VNA) at room temperature (300 K) and in the presence of liquid nitrogen (77 K). The solid-state filter showed high return loss (i.e. -22 dB) at operating frequency of 9.7 GHz and broad bandwidth of 1.5 GHz, which is consistent with the simulation results. The insertion losses for YBCO filters are ~-2, ~-1.5 and ~-3 dB for the normal, nanoparticle and nanorod respectively. However, the electrospun filters exhibited lower performance due to the nano-structural properties of YBCO samples at nanoscale which make these sample have a large band gap compared to solid-state sample. The results indicate that the filter design and simulation result are reliable. Hence, HTS YBCO could be a potential microwave bandpass filter in industry.
Citation
Saleh Eesaa Jasim, Mohamad Ashry Jusoh, You Kok Yeow, and Jose Rajan, "A High Return Loss of Microwave Bandpass Filter Using Superconducting Electrospun YBCO Nanostructures," Progress In Electromagnetics Research C, Vol. 81, 63-75, 2018.
doi:10.2528/PIERC17102601
References

1. Nisenoff, M., "Microwave superconductivity Part 1: History, properties and early applications," 2011 IEEE MTT-S International Conference Microwave Symposium Digest (MTT), 1-4, 2011.

2. Mansour, R. R., "Microwave superconductivity," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, 750-759, 2002.
doi:10.1109/22.989959

3. Ribadeneira-Ramirez, J., G. Martinez, D. Gomez-Barquero, and N. Cardona, "Interference analysis between digital terrestrial television (DTT) and 4G LTE mobile networks in the digital dividend bands," IEEE Transactions on Broadcasting, Vol. 62, 24-34, 2016.
doi:10.1109/TBC.2015.2492465

4. Davidson, D. B., Computational Electromagnetics for RF and Microwave Engineering, 23-30, Cambridge University Press, 2010.
doi:10.1017/CBO9780511778117

5. Newman, N. and W. G. Lyons, "High-temperature superconducting microwave devices: Fundamental issues in materials, physics, and engineering," Journal of Superconductivity, Vol. 6, 119-160, 1993.
doi:10.1007/BF00625741

6. Weigel, R., A. Valenzuela, and P. Russer, "YBCO superconducting microwave components," Applied Superconductivity, Vol. 1, 1595-1604, 1993.
doi:10.1016/0964-1807(93)90307-N

7. Van Delft, D., "History and significance of the discovery of superconductivity by Kamerlingh Onnes in 1911," Physica C: Superconductivity, Vol. 479, 30-35, 2012.
doi:10.1016/j.physc.2012.02.046

8. Wang, L., C.-H. Hsieh, and C.-C. Chang, "Cross-coupled narrow-band filter for the frequency range of 2.1GHz using YBCO resonators with artificial magnetic pinning lattices," IEEE Transactions on Applied Superconductivity, Vol. 15, 1040-1043, 2005.
doi:10.1109/TASC.2005.850192

9. Bai, D., J. Du, T. Zhang, and Y. He, "A compact high temperature superconducting bandpass filter for integration with a Josephson mixer," Journal of Applied Physics, Vol. 114, 133906, 2013.
doi:10.1063/1.4824489

10. Zhang, T., K. Yang, H. Zhu, L. Zhou, M. Jiang, and W. Dang, "Miniaturized HTS linear phase filter based on neighboring CQ units sharing resonators," Superconductor Science and Technology, Vol. 28, 105012, 2015.
doi:10.1088/0953-2048/28/10/105012

11. Greenberg, Y., Y. Lumelsky, M. Silverstein, and E. Zussman, "YBCO nanofibers synthesized by electrospinning a solution of poly (acrylic acid) and metal nitrates," Journal of Materials Science, Vol. 43, 1664-1668, 2008.
doi:10.1007/s10853-007-2389-9

12. Shen, Z., Y. Wang, W. Chen, L. Fei, K. Li, and H. L. W. Chan, "Electrospinning preparation and high-temperature superconductivity of YBa2Cu3O7−x nanotubes," Journal of Materials Science, Vol. 48, 3985-3990, 2013.
doi:10.1007/s10853-013-7207-y

13. Duarte, E. A., N. G. Rudawski, P. A. Quintero, M. W. Meisel, and J. C. Nino, "Electrospinning of superconducting YBCO nanowires," Superconductor Science and Technology, Vol. 28, 015006, 2014.
doi:10.1088/0953-2048/28/1/015006

14. Cui, X. M., W. S. Lyoo, W. K. Son, D. H. Park, J. H. Choy, and T. S. Lee, "Fabrication of YBa2Cu3O7−δ superconducting nanofibres by electrospinning," Superconductor Science and Technology, Vol. 19, 1264, 2006.
doi:10.1088/0953-2048/19/12/007

15. Uslu, I., M. Kemal Ozturk, M. Levent Aksu, and F. Gokmese, "Fabrication and characterization of boron supported YBCO superconductive nanofibers by electrospinning," Current Nanoscience, Vol. 6, 408-412, 2010.
doi:10.2174/157341310791658946

16. Jasim, S. E. and M. A. Jusoh, "Design broad bandwidth microwave bandpass filter of 10 GHz operating frequency using HFSS," Proceedings of the 119th IIER International Conference, 31-34, Putrajaya, Malaysia, September 4-5, 2017.

17. Jasim, S. E., M. A. Jusoh, M. Hafiz, and R. Jose, "Fabrication of superconducting YBCO nanoparticles by electrospinning," Procedia Engineering, Vol. 148, 243-248, 2016.
doi:10.1016/j.proeng.2016.06.595

18. Chen, J.-X., T. Y. Yum, J.-L. Li, and Q. Xue, "Dual-mode dual-band bandpass filter using stacked-loop structure," IEEE Microwave and Wireless Components Letters, Vol. 16, 502-504, 2006.
doi:10.1109/LMWC.2006.880705

19. Sun, S. and L. Zhu, "Compact dual-band microstrip bandpass filter without external feeds," IEEE Microwave and Wireless Components Letters, Vol. 15, 644-646, 2005.
doi:10.1109/LMWC.2005.856687

20. Kumar, M. and S. Kumar, "Designing of half wavelength parallel-edge coupled line bandpass filter using HFSS," International Journal of Advanced Research in Computer Science and Software Engineering, Vol. 4, 876-882, 2014.

21. Mohajeri, R., Y. A. Opata, A. C. Wulff, J.-C. Grivel, and M. Fardmanesh, "All metal organic deposited high-Tc superconducting transition edge bolometer on yttria-stabilized zirconia substrate," Journal of Superconductivity and Novel Magnetism, Vol. 1, 1-6, 2016.

22. Nur-Akasyah, J., N. Nur-Shamimie, and R. Abd-Shukor, "Effect of CdTe addition on the electrical properties and AC susceptibility of YBa2Cu3O7−δ superconductor," Journal of Superconductivity and Novel Magnetism, 1-5, 2017.

23. Zhang, T., J. Du, Y. J. Guo, and X.-W. Sun, "On-chip integration of HTS bandpass and lowpass filters with Josephson mixer," Electronics Letters, Vol. 48, 729-731, 2012.
doi:10.1049/el.2012.1411

24. Dadras, S. and M. Ghavamipour, "Investigation of the properties of carbon-base nanostructures doped YBa2Cu3O7−δ high temperature superconductor," Physica B: Condensed Matter, Vol. 1, 13-17, 2016.
doi:10.1016/j.physb.2015.12.025

25. Croitoru, M. D., A. A. Shanenko, and F. M. Peeters, "Dependence of superconducting properties on the size and shape of a nanoscale superconductor: From nanowire to film," Physical Review B, Vol. 1, 024511, 2007.
doi:10.1103/PhysRevB.76.024511

26. Lu, X., B. Wei, Z. Xu, B. Cao, X. Guo, and X. Zhang, "Superconducting Ultra-Wideband (UWB) bandpass filter design based on quintuple/quadruple/triple-mode resonator," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, 1281-1293, 2015.
doi:10.1109/TMTT.2015.2402152

27. Jing, D., K. Shao, C. Cao, L. Zhang, G. Jiao, and Z. Zhang, "10 GHz bandpass YBCO superconducting microstrip filter," Superconductor Science and Technology, Vol. 7, 792, 1994.
doi:10.1088/0953-2048/7/11/002

28. Zhang, T., L. Zhou, K. Yang, C. Luo, M. Jiang, and W. Dang, "The research of parallel-coupled linear-phase superconducting filter," Physica C: Superconductivity and Its Applications, Vol. 519, 153-158, 2015.
doi:10.1016/j.physc.2015.10.006

29. Bhattacharjee, S., D. Poddar, S. Mukherjee, S. Saurabh, and S. Das, "Design of microstrip parallel coupled band pass filter for global positioning system," Journal of Engineering, Computers & Applied Sciences (JEC&AS), Vol. 2, 122-159, 2013.

30. Chung, D.-C., "HTS bandpass filters using parallel coupled microstrip-stepped impedance resonator," Physica C: Superconductivity, Vol. 341, 2659-2660, 2000.
doi:10.1016/S0921-4534(00)01445-3

31. Shivhare, J., "Design and development of low loss microstrip band pass filters by using YBCO-high temperature superconducting thin film," Recent Advances in Microwave Theory and Applications, 2008, International Conference MICROWAVE 2008, 382-383, 2008.
doi:10.1109/AMTA.2008.4762964

32. Shang, Z., X. Guo, B. Cao, X. Zhang, B. Wei, and Y. Heng, "Design and performance of an HTS wideband microstrip bandpass filter at X-band," Microwave and Optical Technology Letters, Vol. 55, 1027-1029, 2013.
doi:10.1002/mop.27485

33. Bai, D., X. He, X. Zhang, H. Li, Q. Zhang, and C. Li, "Design of an s-band HTS filter with high power capability," IEEE Transactions on Applied Superconductivity, Vol. 23, 14-18, 2013.
doi:10.1109/TASC.2013.2277776

34. Liu, H., L. Rao, Y. Xu, P.Wen, B. Ren, and X. Guan, "Design of high-temperature superconducting wideband bandpass filter with narrow-band notch resonators for radio telescope application," IEEE Transactions on Applied Superconductivity, Vol. 27, 1-4, 2017.