1. Slipchenko, T. M., M. L. Nesterov, L. Martin-Moreno, and A. Yu Nikitin, "Analytical solution for the di®raction of an electromagnetic wave by a graphene grating," J. Opt., Vol. 15, 114008, 2013.
doi:10.1088/2040-8978/15/11/114008 Google Scholar
2. Bludov, Y. V., A. Ferreira, N. M. R. Peres, and M. I. Vasilevskiy, "A primer on surface plasmon-polaritons in graphene," Int. J. of Mod. Phys. B, Vol. 27, 1341001, 2013.
doi:10.1142/S0217979213410014 Google Scholar
3. Peres, N. M. R., A. Ferreira, Y. V. Bludov, and M. I. Vasilevskiy, "Light scattering by a medium with a spatially modulated optical conductivity: the case of graphene," J. Phys.: Condens. Matter, Vol. 24, 245303, 2012.
doi:10.1088/0953-8984/24/24/245303 Google Scholar
4. Huidobro, P. A., M. Kraft, R. Kun, S. A. Maier, and J. B. Pendry, "Graphene, plasmons and transformation optics," J. Opt., Vol. 18, 044024, 2016.
doi:10.1088/2040-8978/18/4/044024 Google Scholar
5. Nikitin, A. Y., F. Guinea, F. J. Garcia-Vidal, and L. Martin-Morene, "Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons," Phys. Rev., Vol. 85, 081405, 2011.
doi:10.1103/PhysRevB.85.081405 Google Scholar
6. Zhan, T. R., F. Y. Zhao, X. H. Hu, X. H. Liu, and J. Zi, "Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies," Phys. Rev. B, Vol. 86, 165416, 2012.
doi:10.1103/PhysRevB.86.165416 Google Scholar
7. Peres, N. M. R., Y. V. Bludov, A, Ferreira, and M. I. Vasilevskiy, "Exact solution for square-wave grating covered with graphene: surface plasmon-polaritons in the terahertz range," J. Phys.: Condens. Matter, Vol. 25, 125303, 2013.
doi:10.1088/0953-8984/25/12/125303 Google Scholar
8. Ding, J., F. T. Fisher, and E. H. Yang, "Direct transfer of corrugated graphene sheets as stretchable electrodes," Journal of Vacuum Science and Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, Vol. 34, 051205, 2016. Google Scholar
9. Wang, M., J. Leem, P. Kang, J. Choi, P. Knapp, K. Yong, and S. Nam, "Mechanical instability driven self-assembly and architecturing of 2D materials," 2D Materials, Vol. 4, 022002, 2017.
doi:10.1088/2053-1583/aa62e8 Google Scholar
10. Yan, Z. X., Y. L. Zhang, W. Wang, X. Y. Fu, H. B. Jiang, Y. Q. Liu, P. Verma, S. Kawata, and H. B. Sun, "Superhydrophobic SERS substrates based on silver-coated reduced graphene oxide gratings prepared by two-beam laser interference," ACS Applied Materials and Interfaces, Vol. 7, 27059, 2015.
doi:10.1021/acsami.5b09128 Google Scholar
11. Florio, G. D., E. Brundermann, N. S. Yadavalli, S. Santer, and M. Havenith, "Graphene multilayer as nano-sized optical strain gauge for polymer surface relief gratings," Nano Letters, Vol. 14, 5754, 2014.
doi:10.1021/nl502631s Google Scholar
12. Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science, Vol. 306, 666, 2004.
doi:10.1126/science.1102896 Google Scholar
13. Jablan, M., M. Soljacic, and H. Buljan, "Plasmons in graphene: fundamental properties and potential applications," Proc. IEEE, Vol. 101, 1689, 2013.
doi:10.1109/JPROC.2013.2260115 Google Scholar
14. Gusynin, P., S. G. Sharapov, and J. P. Carbotte, "Magneto-optical conductivity in graphene," J. Phys.: Condens. Matter, Vol. 19, 026222, 2007.
doi:10.1088/0953-8984/19/2/026222 Google Scholar
15. Li, Z. Q., E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, "Dirac charge dynamics in graphene by infrared spectroscopy," Nature Phys., Vol. 4, 532, 2008.
doi:10.1038/nphys989 Google Scholar
16. Alaee, R., M. Farhat, C. Rockstuhl, and F. Lederer, "A perfect absorber made of a graphene micro-ribbon metamaterial," Opt. Express, Vol. 20, 28017, 2012.
doi:10.1364/OE.20.028017 Google Scholar
17. Fadakar, H., A. Borji, A. Z. Nezhad, M, and Shahabadi, "Improved fourier analysis of periodically patterned graphene sheets embedded in multilayered structures and its application to the design of a broadband tunable wide-angle polarizer," IEEE J. Quantum Electron, Vol. 53, 1, 2017.
doi:10.1109/JQE.2017.2696496 Google Scholar
18. Khoozani, P. K., M. Maddahali, M. Shahabadi, and A. Bakhtafrouz, "Analysis of magnetically biased graphene-based periodic structures using a transmission-line formulation," JOSA B, Vol. 33, 2566, 2016.
doi:10.1364/JOSAB.33.002566 Google Scholar
19. Kim, J. T. and S. Y. Choi, "Graphene-based plasmonic waveguides for photonic integrated circuits," Opt. Express, Vol. 19, 24557, 2011.
doi:10.1364/OE.19.024557 Google Scholar
20. Rayleigh, L., "On the dynamical theory of grating," Proc. R. Soc. A, Vol. 79, 399, 1907.
doi:10.1098/rspa.1907.0051 Google Scholar
21. Maystre, D. and M. Neviere, "Electromagnetic theory of crossed gratings," J. Opt., Vol. 9, 301, 1978.
doi:10.1088/0150-536X/9/5/005 Google Scholar
22. Chandezon, J., D. Maystre, and G. Raoult, "A new theoretical method for di®raction gratings and its numerical application," J. Opt., Vol. 11, 235, 1980.
doi:10.1088/0150-536X/11/4/005 Google Scholar
23. Chandezon, J., M. T. Dupuis, G. Cornet, and D. Maystre, "Multicoated gratings: a differential formalism applicable in the entire optical region," J. Opt. Soc. Am., Vol. 72, 839, 1982.
doi:10.1364/JOSA.72.000839 Google Scholar
24. Cao, Y. S, L. J. Jiang, and L. J. Ruehli, "The derived equivalent circuit model for non-magnetized and magnetized graphene," Wireless Information Technology and Systems (ICWITS) and Applied Computational Electromagnetics (ACES), 2016 IEEE/ACES International Conference on, 1, 2016. Google Scholar
25. Petit, R., A Tutorial Introduction, Electromagnetic Theory of Gratings. Springer Berlin Heidelberg, 1980.
26. Li, L., J. Chandezon, G. Granet, and J.-P. Plumey, "Rigorous and efficient grating-analysis method made easy for optical engineers," Appl. Opt., Vol. 38, 304, 1999.
doi:10.1364/AO.38.000304 Google Scholar
27. David, J. G. and R. College, Introduction to Electrodynamics, Prentice Hall, 1999.
28. Ko, D. Y. K. and J. R. Sambles, "Scattering matrix method for propagation of radiation in stratified media: attenuated total reflection studies of liquid crystals," J. Opt. Soc. Am. A, Vol. 5, 1863, 1988.
doi:10.1364/JOSAA.5.001863 Google Scholar
29. Chen, P. Y. and A. Alu, "Atomically thin surface cloak using graphene monolayers," ACS Nano, Vol. 5, 5855, 2011.
doi:10.1021/nn201622e Google Scholar
30. Hanson, G. W., "Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene," J. Appl. Phys., Vol. 103, 064302, 2008.
doi:10.1063/1.2891452 Google Scholar
31. Jishi, R. A., M. S. Dresselhaus, and G. Dresselhaus, "Electron-phonon coupling and the electrical conductivity of fullerene nanotubules," Phys. Rev. B, Vol. 48, 11385, 1993.
doi:10.1103/PhysRevB.48.11385 Google Scholar