Vol. 65
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-03-15
Analysis of Diffraction Graphene Gratings Using the‎ C-Method and Design of a Terahertz Polarizer‎
By
Progress In Electromagnetics Research M, Vol. 65, 175-186, 2018
Abstract
We analyze relief graphene gratings by the coordinate transformation method (the C-method). This method is also used for analysis of multilayer gratings with graphene sheets at the interfaces. By using this method, we are able to obtain the eciency of deep graphene gratings with fast convergence rate while previous methods are limited to very shallow graphene gratings. Moreover, a terahertz polarizer is designed by relief graphene grating. Polarization extinction ratio and transmittance of single-layer and double-layer polarizer are simulated by the C-method. Double-layer polarizer gives extinction ratio from 22 dB to 10 dB over a frequency range of 1 GHz to 4 THz.
Citation
Farzaneh Arab Juneghani, Abolghasem Zeidaabadi-Nezhad, and Reza Safian, "Analysis of Diffraction Graphene Gratings Using the‎ C-Method and Design of a Terahertz Polarizer‎," Progress In Electromagnetics Research M, Vol. 65, 175-186, 2018.
doi:10.2528/PIERM17102901
References

1. Slipchenko, T. M., M. L. Nesterov, L. Martin-Moreno, and A. Yu Nikitin, "Analytical solution for the di®raction of an electromagnetic wave by a graphene grating," J. Opt., Vol. 15, 114008, 2013.
doi:10.1088/2040-8978/15/11/114008        Google Scholar

2. Bludov, Y. V., A. Ferreira, N. M. R. Peres, and M. I. Vasilevskiy, "A primer on surface plasmon-polaritons in graphene," Int. J. of Mod. Phys. B, Vol. 27, 1341001, 2013.
doi:10.1142/S0217979213410014        Google Scholar

3. Peres, N. M. R., A. Ferreira, Y. V. Bludov, and M. I. Vasilevskiy, "Light scattering by a medium with a spatially modulated optical conductivity: the case of graphene," J. Phys.: Condens. Matter, Vol. 24, 245303, 2012.
doi:10.1088/0953-8984/24/24/245303        Google Scholar

4. Huidobro, P. A., M. Kraft, R. Kun, S. A. Maier, and J. B. Pendry, "Graphene, plasmons and transformation optics," J. Opt., Vol. 18, 044024, 2016.
doi:10.1088/2040-8978/18/4/044024        Google Scholar

5. Nikitin, A. Y., F. Guinea, F. J. Garcia-Vidal, and L. Martin-Morene, "Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons," Phys. Rev., Vol. 85, 081405, 2011.
doi:10.1103/PhysRevB.85.081405        Google Scholar

6. Zhan, T. R., F. Y. Zhao, X. H. Hu, X. H. Liu, and J. Zi, "Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies," Phys. Rev. B, Vol. 86, 165416, 2012.
doi:10.1103/PhysRevB.86.165416        Google Scholar

7. Peres, N. M. R., Y. V. Bludov, A, Ferreira, and M. I. Vasilevskiy, "Exact solution for square-wave grating covered with graphene: surface plasmon-polaritons in the terahertz range," J. Phys.: Condens. Matter, Vol. 25, 125303, 2013.
doi:10.1088/0953-8984/25/12/125303        Google Scholar

8. Ding, J., F. T. Fisher, and E. H. Yang, "Direct transfer of corrugated graphene sheets as stretchable electrodes," Journal of Vacuum Science and Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, Vol. 34, 051205, 2016.        Google Scholar

9. Wang, M., J. Leem, P. Kang, J. Choi, P. Knapp, K. Yong, and S. Nam, "Mechanical instability driven self-assembly and architecturing of 2D materials," 2D Materials, Vol. 4, 022002, 2017.
doi:10.1088/2053-1583/aa62e8        Google Scholar

10. Yan, Z. X., Y. L. Zhang, W. Wang, X. Y. Fu, H. B. Jiang, Y. Q. Liu, P. Verma, S. Kawata, and H. B. Sun, "Superhydrophobic SERS substrates based on silver-coated reduced graphene oxide gratings prepared by two-beam laser interference," ACS Applied Materials and Interfaces, Vol. 7, 27059, 2015.
doi:10.1021/acsami.5b09128        Google Scholar

11. Florio, G. D., E. Brundermann, N. S. Yadavalli, S. Santer, and M. Havenith, "Graphene multilayer as nano-sized optical strain gauge for polymer surface relief gratings," Nano Letters, Vol. 14, 5754, 2014.
doi:10.1021/nl502631s        Google Scholar

12. Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science, Vol. 306, 666, 2004.
doi:10.1126/science.1102896        Google Scholar

13. Jablan, M., M. Soljacic, and H. Buljan, "Plasmons in graphene: fundamental properties and potential applications," Proc. IEEE, Vol. 101, 1689, 2013.
doi:10.1109/JPROC.2013.2260115        Google Scholar

14. Gusynin, P., S. G. Sharapov, and J. P. Carbotte, "Magneto-optical conductivity in graphene," J. Phys.: Condens. Matter, Vol. 19, 026222, 2007.
doi:10.1088/0953-8984/19/2/026222        Google Scholar

15. Li, Z. Q., E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, "Dirac charge dynamics in graphene by infrared spectroscopy," Nature Phys., Vol. 4, 532, 2008.
doi:10.1038/nphys989        Google Scholar

16. Alaee, R., M. Farhat, C. Rockstuhl, and F. Lederer, "A perfect absorber made of a graphene micro-ribbon metamaterial," Opt. Express, Vol. 20, 28017, 2012.
doi:10.1364/OE.20.028017        Google Scholar

17. Fadakar, H., A. Borji, A. Z. Nezhad, M, and Shahabadi, "Improved fourier analysis of periodically patterned graphene sheets embedded in multilayered structures and its application to the design of a broadband tunable wide-angle polarizer," IEEE J. Quantum Electron, Vol. 53, 1, 2017.
doi:10.1109/JQE.2017.2696496        Google Scholar

18. Khoozani, P. K., M. Maddahali, M. Shahabadi, and A. Bakhtafrouz, "Analysis of magnetically biased graphene-based periodic structures using a transmission-line formulation," JOSA B, Vol. 33, 2566, 2016.
doi:10.1364/JOSAB.33.002566        Google Scholar

19. Kim, J. T. and S. Y. Choi, "Graphene-based plasmonic waveguides for photonic integrated circuits," Opt. Express, Vol. 19, 24557, 2011.
doi:10.1364/OE.19.024557        Google Scholar

20. Rayleigh, L., "On the dynamical theory of grating," Proc. R. Soc. A, Vol. 79, 399, 1907.
doi:10.1098/rspa.1907.0051        Google Scholar

21. Maystre, D. and M. Neviere, "Electromagnetic theory of crossed gratings," J. Opt., Vol. 9, 301, 1978.
doi:10.1088/0150-536X/9/5/005        Google Scholar

22. Chandezon, J., D. Maystre, and G. Raoult, "A new theoretical method for di®raction gratings and its numerical application," J. Opt., Vol. 11, 235, 1980.
doi:10.1088/0150-536X/11/4/005        Google Scholar

23. Chandezon, J., M. T. Dupuis, G. Cornet, and D. Maystre, "Multicoated gratings: a differential formalism applicable in the entire optical region," J. Opt. Soc. Am., Vol. 72, 839, 1982.
doi:10.1364/JOSA.72.000839        Google Scholar

24. Cao, Y. S, L. J. Jiang, and L. J. Ruehli, "The derived equivalent circuit model for non-magnetized and magnetized graphene," Wireless Information Technology and Systems (ICWITS) and Applied Computational Electromagnetics (ACES), 2016 IEEE/ACES International Conference on, 1, 2016.        Google Scholar

25. Petit, R., A Tutorial Introduction, Electromagnetic Theory of Gratings. Springer Berlin Heidelberg, 1980.

26. Li, L., J. Chandezon, G. Granet, and J.-P. Plumey, "Rigorous and efficient grating-analysis method made easy for optical engineers," Appl. Opt., Vol. 38, 304, 1999.
doi:10.1364/AO.38.000304        Google Scholar

27. David, J. G. and R. College, Introduction to Electrodynamics, Prentice Hall, 1999.

28. Ko, D. Y. K. and J. R. Sambles, "Scattering matrix method for propagation of radiation in stratified media: attenuated total reflection studies of liquid crystals," J. Opt. Soc. Am. A, Vol. 5, 1863, 1988.
doi:10.1364/JOSAA.5.001863        Google Scholar

29. Chen, P. Y. and A. Alu, "Atomically thin surface cloak using graphene monolayers," ACS Nano, Vol. 5, 5855, 2011.
doi:10.1021/nn201622e        Google Scholar

30. Hanson, G. W., "Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene," J. Appl. Phys., Vol. 103, 064302, 2008.
doi:10.1063/1.2891452        Google Scholar

31. Jishi, R. A., M. S. Dresselhaus, and G. Dresselhaus, "Electron-phonon coupling and the electrical conductivity of fullerene nanotubules," Phys. Rev. B, Vol. 48, 11385, 1993.
doi:10.1103/PhysRevB.48.11385        Google Scholar